## TEXAS

## ALGEBRA

STUDENT TEXT AND
HOMEWORK HELPER

Randall I. Charles • Allan E. Bellman • Basia Hall
William G. Handlin, Sr. • Dan Kennedy
Stuart J. Murphy • Grant Wiggins

## PEARSON

Boston, Massachusetts • Chandler, Arizona • Glenview, Illinois • Hoboken, New Jersey

Copyright © 2016 Pearson Education, Inc., or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to Rights Management \& Contracts, Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030.

Pearson, Prentice Hall, Pearson Prentice Hall, and MathXL are trademarks, in the U.S. and/or other countries, of Pearson Education, Inc., or its affiliates.

Apple, the Apple logo, and iTunes are trademarks of Apple Inc., registered in the U.S. and other countries. Google Play is a trademark of Google Inc.

## TOPIC 9 Exponential Functions and Equations

TOPIC 9 Overview ..... 384
9-1 Exponential Functions ..... 386
9-2 Exponential Growth and Decay ..... 395
9-3 Modeling Exponential Data ..... 402

## TEXAS ESSENTIAL KNOWLEDGE AND SKILLS (TEKS) FOCUS

(9)(A) Determine the domain and range of exponential functions of the form $f(x)=a b^{x}$ and represent the domain and range using inequalities.
(9)(B) Interpret the meaning of the values of $a$ and $b$ in exponential functions of the form $f(x)=a b^{x}$ in real-world problems.
(9)(C) Write exponential functions in the form $f(x)=a b^{x}$ (where $b$ is a rational number) to describe problems arising from mathematical and real-world situations, including growth and decay.
(9)(D) Graph exponential functions that model growth and decay and identify key features, including $y$-intercept and asymptote, in mathematical and real-world problems.
(9)(E) Write, using technology, exponential functions that provide a reasonable fit to data and make predictions for real-world problems.
(12)(B) Evaluate functions, expressed in function notation, given one or more elements in their domains.

## topic 9 Exponential Functions and Equations

## TOPIC OVERVIEW

9-1 Exponential Functions
9-2 Exponential Growth and Decay
9-3 Modeling Exponential Data

## VOCABULARY

English/Spanish Vocabulary Audio Online:

English
asymptote, p. 386
compound interest, p. 396
decay factor, p. 396
exponential decay, p. 396
exponential function, p. 386
exponential growth, p. 395
growth factor, p. 395

Spanish
asíntota
interés compuesto
factor de decremento decremento exponencial función exponencial incremento exponencial factor incremental

## DICITAL $\square \square \square$

APPS $\square$

## ■

## Access Your Homework...

## ONLINE HOMEWORK

You can do all of your homework online with built-in examples and "Show Me How" support! When you log in to your account, you'll see the homework your teacher has assigned you.

## HOMEWORK TUTOR APP

Do your homework anywhere! You can access the Practice and Application Exercises, as well as Virtual Nerd tutorials, with this Homework Tutor app, available on any mobile device.

## STUDENT TEXT AND HOMEWORK HELPER

Access the Practice and Application Exercises that you are assigned for homework in the Student Text and Homework Helper, which is also available as an electronic book.


## If You Need Help...

## VOCABULARY ONLINE

You'll find definitions of math terms in both English and Spanish. All of the terms have audio support.

## INTERACTIVE EXPLORATION

You'll have access to a robust assortment of interactive explorations, including interactive concept explorations, dynamic activitites, and topiclevel exploration activities.

## LEARNING ANIMATIONS

You can also access all of the stepped-out learning animations that you studied in class.

## STUDENT COMPANION

Refer to your notes and solutions in your Student Companion. Remember that your Student Companion is also available as an ACTIVebook accessible on any digital device.

## INTERACTIVE MATH TOOLS

These interactive math tools give you opportunities to explore in greater depth key concepts to help build understanding.

## VIRTUAL NERD

Not sure how to do some of the practice exercises? Check out the Virtual Nerd videos for stepped-out, multi-level instructional support.

## TEKS FOCUS

TEKS (9)(A) Determine the domain and range of exponential functions of the form $f(x)=a b^{x}$ and represent the domain and range using inequalities.

TEKS (1)(C) Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.

Additional TEKS (1)(A), (1)(D), (9)(C), (9)(D), (12)(B)

## VOCABULARY

- Asymptote - An asymptote is a line that a graph of a function gets closer to as $x$ or $y$ gets larger in absolute value.
- Exponential function - An exponential function is a function of the form $y=a b^{x}$, where $a$ is a nonzero constant, $b>0$, and $b \neq 1$.
- Number sense - the understanding of what numbers mean and how they are related


## ESSENTIAL UNDERSTANDING

Some functions model an initial amount that is repeatedly multiplied by the same positive number. In the rules for these functions, the independent variable is an exponent.

## Key Concept Exponential Function

## Definition

An exponential function is a function of the form $y=a \cdot b^{x}$, where $a \neq 0, b>0$,
$b \neq 1$, and $x$ is a real number.

## Examples




## Key Concept Asymptote of an Exponential Function $y=a b^{x}$

The $x$-axis $(y=0)$ is the horizontal asymptote for an exponential function of the form $y=a b^{x}$.

The $y$-values approach zero, but never actually reach zero. The graphs approach, but do not cross, the $x$-axis.


The $x$-axis is an asymptote.

## Problem 1

## Think

How can you identify a constant ratio between $\boldsymbol{y}$-values? When you multiply each $y$-value by the same constant and get the next $y$-value, there is a constant ratio between the values.

## Identifying Linear and Exponential Functions

Does the table or rule represent a linear or an exponential function? Explain.
©


The difference between the $x$-values is 1 .


The ratio between the $y$-values is 3 .

The table represents an exponential function. There is a common difference between consecutive $x$-values and a common ratio between the corresponding $y$-values.
B $y=3 x$
The rule represents a linear function because it is in the form $y=m x+b$. The independent variable $x$ is not an exponent.

## Writing an Exponential Function

The figures below are stages of the Sierpinski triangle. In Stage 0, there is one black triangle. In each subsequent stage, a white triangle is added to the center of each black triangle, dividing that triangle into 3 black triangles and 1 white triangle. The number of black triangles increases by a factor of 3 in each stage.
Write an exponential function $f(x)=a b^{x}$ to describe this situation.
The factor by which the number of black triangles increases at each stage is the value of $b$. Using the fact that $b$ is 3 , you can show that the value of $a$ is 1 , the number of triangles in Stage 0 .

$$
\begin{aligned}
f(x) & =a b^{x} & & \text { Write the formula for the exponential function. } \\
f(x) & =a \cdot 3^{x} & & \text { Substitute } 3 \text { for } b . \\
1 & =a \cdot 3^{0} & & \text { From Stage } 0, \text { you know that } f(0)=1 . \\
1 & =a \cdot 1 & & \text { Simplify } 3^{0} . \\
1 & =a & & \text { Solve for } a . \\
f(x) & =1 \cdot 3^{x} & & \text { Substitute } 1 \text { for } a \text { in the formula } f(x)=a \cdot 3^{x} . \\
f(x) & =3^{x} & & \text { Simplify. }
\end{aligned}
$$

B Determine in what stage there will first be more than 1000 black triangles.
You can select techniques such as estimation and mental math to solve this problem.
In Stage 2 , you know there are 9 black triangles. Round 9 to 10 and then multiply by the factor 3 to estimate the number of black triangles in later stages.

The estimate of 900 in Stage 6 is high, since you rounded up in earlier stages. So, you know the number of black triangles in Stage 6 is less than 1000. When you multiply by 3 again, the number of
 black triangles will exceed 1000.

There will first be more than 1000 black triangles in Stage 7.
Check You can confirm this result by evaluating $f(6)$ and $f(7)$.

$$
f(x)=3^{6}=729 \quad f(x)=3^{7}=2187
$$

## Think

Why is the function $30 \cdot 2^{x}$ not $2 \cdot 30^{x}$ ? In an exponential function, $a$ is the starting value and $b$ is the common ratio.

## Evaluating an Exponential Function

Population Growth Suppose 30 flour beetles are left undisturbed in a warehouse bin. The beetle population doubles each week. The function $f(x)=30 \cdot 2^{x}$ gives the population after $x$ weeks. How many beetles will there be after 56 days?

$$
\begin{aligned}
f(x) & =30 \cdot 2^{x} & & \\
& =30 \cdot 2^{8} & & 56 \text { days is equal to } 8 \text { weeks. } \\
& =30 \cdot 256 & & \text { Simaluate the function for } x=8 . \\
& =7680 & & \text { Simplify the power. }
\end{aligned}
$$

After 56 days, there will be 7680 beetles.


## Problem 4

## Think

How can you use the graph to find the domain and range? The domain can be found by using the $x$-coordinates on the graph and the range can be found by using the $y$-coordinates on the graph.

## Graphing an Exponential Function

A What is the graph of $y=3 \cdot 2^{x}$ ? Identify the domain and range. Express the range using an inequality.

Make a table of $x$ - and $y$-values.

| $x$ | $y=3 \cdot 2^{x}$ | $(x, y)$ |
| ---: | :---: | :---: |
| -2 | $3 \cdot 2^{-2}=\frac{3}{2^{2}}=\frac{3}{4}$ | $\left(-2, \frac{3}{4}\right)$ |
| -1 | $3 \cdot 2^{-1}=\frac{3}{2^{1}}=1 \frac{1}{2}$ | $\left(-1,1 \frac{1}{2}\right)$ |
| 0 | $3 \cdot 2^{0}=3 \cdot 1=3$ | $(0,3)$ |
| 1 | $3 \cdot 2^{1}=3 \cdot 2=6$ | $(1,6)$ |
| 2 | $3 \cdot 2^{2}=3 \cdot 4=12$ | $(2,12)$ |



Any value substituted for $x$ results in a positive $y$-value.
The domain is all real numbers. The range is $y>0$.
B What is the $y$-intercept of the exponential function in part (A)? What is the asymptote?
The table and the graph show that when $x=0, y=3$. The $y$-intercept of $y=3 \cdot 2^{x}$ is 3 .

The table and the graph show that as $x$ decreases, the $y$-values get smaller. The value of $3 \cdot 2^{x}$ will always be positive, so the $y$-values will approach zero, but never reach zero. The $x$-axis is the horizontal asymptote for $y=3 \cdot 2^{x}$.

## Problem 5

## Graphing an Exponential Model

Maps Computer mapping software allows you to zoom in on an area to view it in more detail. The function $f(x)=100 \cdot 0.25^{x}$ models the percent of the original area the map shows after zooming in $x$ times. Graph the function. Identify the $y$-intercept, the asymptote, and the domain.

| $x$ | $f(x)=100 \cdot 0.25^{x}$ | $(x, f(x))$ |
| :--- | :--- | :---: |
| 0 | $100 \cdot 0.25^{0}=100$ | $(0,100)$ |
| 1 | $100 \cdot 0.25^{1}=25$ | $(1,25)$ |
| 2 | $100 \cdot 0.25^{2}=6.25$ | $(2,6.25)$ |
| 3 | $100 \cdot 0.25^{3} \approx 1.56$ | $(3,1.56)$ |
| 4 | $100 \cdot 0.25^{4} \approx 0.39$ | $(4,0.39)$ |



Think
Should you connect the points of the graph?
No, the data is discrete not continuous. The number of times you zoom in must be a nonnegative integer.



When $x=0, y=100$, so the $y$-intercept is 100 . The $x$-axis is the horizontal asymptote.
The domain is $x \geq 0, x$ is an integer.

## Problem 6

## Solving One-Variable Equations

What is the solution or solutions of $2^{x}=0.5 x+2$ ?
Step 1 Write each side of the equation as a function equation.
$f(x)=2^{x}$ and $g(x)=0.5 x+2$
Step 2 Graph the equations using a graphing calculator.
Use $y_{1}$ for $f(x)$ and $y_{2}$ for $g(x)$.


## Problem 6 continued

## Think

How can you check that the $x$-value is a solution? Substitute for $x$ in the original equation. Make sure you use the same $x$-value for each instance of $x$.

Step 3 Use the CALC feature. Chose INTERSECT to find the points where the lines intersect.


The solutions of $2^{x}=0.5 x+2$ are about -3.86 and 1.44.


For additional support when completing your homework, go to PearsonTEXAS.com.

Determine whether each table or rule represents a linear or an exponential function. Explain why or why not.
1.

2.

3. $y=4 \cdot 5^{x}$
4. $y=12 \cdot x$
5. $y=-5 \cdot 0.25^{x}$
6. $y=7 x+3$

Evaluate each function for the given value.
7. $f(x)=6^{x}$ for $x=2$
8. $g(t)=2 \cdot 0.4^{t}$ for $t=-2$
9. $y=20 \cdot 0.5^{x}$ for $x=3$
10. $h(w)=-0.5 \cdot 4^{w}$ for $w=18$
11. Apply Mathematics (1)(A) An investment of $\$ 5000$ doubles in value every decade. The function $f(x)=5000 \cdot 2^{x}$, where $x$ is the number of decades, models the growth of the value of the investment. How much is the investment worth after 30 yr ?
12. Apply Mathematics (1)(A) A population of 75 foxes in a wildlife preserve quadruples in size every 15 yr . The function $y=75 \cdot 4^{x}$, where $x$ is the number of $15-\mathrm{yr}$ periods, models the population growth. How many foxes will there be after 45 yr ?

Graph each exponential function. Identify the domain, range, $y$-intercept, and asymptote of each function. Express each range using an inequality.
13. $y=4^{x}$
14. $y=-4^{x}$
15. $y=\left(\frac{1}{3}\right)^{x}$
16. $y=-\left(\frac{1}{3}\right)^{x}$
17. $y=10 \cdot\left(\frac{3}{2}\right)^{x}$
18. $y=0.1 \cdot 2^{x}$
19. $y=\frac{1}{4} \cdot 2^{x}$
20. $y=1.25^{x}$

Select Tools to Solve Problems (1)(C) Use a graph to solve each equation.
21. $4^{x}=\frac{3}{2} x+5$
22. $x+3=3^{x}$
23. Analyze Mathematical Relationships (1)(F) A new museum had 7500 visitors this year. The museum curators expect the number of visitors to grow by $5 \%$ each year. The function $y=7500 \cdot 1.05^{x}$ models the predicted number of visitors each year after $x$ years. Graph the function. Identify the domain, range, $y$-intercept, and asymptote of the function. Express the range using an inequality.
24. Use Multiple Representations to Communicate Mathematical Ideas (1)(D) A solid waste disposal plan proposes to reduce the amount of garbage each person throws out by $2 \%$ each year. This year, each person threw out an average of 1500 lb of garbage. The function $y=1500 \cdot 0.98^{x}$ models the average amount of garbage each person will throw out each year after $x$ years. Graph the function. Identify the domain, range, $y$-intercept, and asymptote of the function. Express the range using an inequality.
25. Use Multiple Representations to Communicate Mathematical Ideas (1)(D) Compare the rule and the function table below. Which function has the greater value when $x=12$ ? Explain.

## Function 1

$y=4^{x}$

## Function 2


26. You have just read a journal article about a population of fungi that doubles every 3 weeks. The beginning population was 10 . The function $y=10 \cdot 2^{\frac{n}{3}}$ represents the population after $n$ weeks.
a. You have a population of 15 of the same fungi. Assuming the journal article gives the correct rate of increase, write the function that represents the population of fungi after $n$ weeks.
b. Suppose you find another article that states that the fungi population triples every 4 weeks. If there are currently 15 fungi in your population, write the function that represents the population after $n$ weeks.
27. Explain Mathematical Ideas (1)(G) Hydra are small freshwater animals. They can double in number every two days in a laboratory tank. Suppose one tank has an initial population of 60 hydra. When will there be more than 5000 hydra?
28. a. Graph $y=2^{x}, y=4^{x}$, and $y=0.25^{x}$ on the same axes.
b. What point is on all three graphs?
c. Does the graph of an exponential function intersect the $x$-axis? Explain.


Hydra
d. How does the graph of $y=b^{x}$ change as the base $b$ increases or decreases?

Write an exponential function to describe the given sequence of numbers.
29. $2,8,32,128,512, \ldots$
30. $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \ldots$

Which function has the greater value for the given value of $x$ ?
31. $y=4^{x}$ or $y=x^{4}$ for $x=2$
32. $f(x)=10 \cdot 2^{x}$ or $f(x)=200 \cdot x^{2}$ for $x=7$
33. $y=3^{x}$ or $y=x^{3}$ for $x=5$
34. $f(x)=2^{x}$ or $f(x)=100 x^{2}$ for $x=10$
35. Apply Mathematics (1)(A) A computer valued at $\$ 1500$ loses $20 \%$ of its value each year.
a. Write a function rule that models the value of the computer.
b. Find the value of the computer after 3 yr .
c. In how many years will the value of the computer be less than $\$ 500$ ?
36. a. Graph the functions $y=x^{2}$ and $y=2^{x}$ on the same axes.
b. What do you notice about the graphs for the values of $x$ between 1 and 3 ?
c. How do you think the graph of $y=8^{x}$ would compare to the graphs of $y=x^{2}$ and $y=2^{x}$ ?
37. Explain Mathematical Ideas (1)(G) Find the range of the function $f(x)=500 \cdot 1^{x}$ using the domain $\{1,2,3,4,5\}$. Explain why the definition of exponential function states that $b \neq 1$.
Evaluate each function over the domain $\{-2,-1,0,1,2,3\}$. As the values of the domain increase, do the values of the range increase or decrease?
38. $f(x)=5^{x}$
39. $y=2.5^{x}$
40. $h(x)=0.1^{x}$

## Solve each equation.

41. $2^{x}=64$
42. $3^{x}=\frac{1}{27}$
43. $3 \cdot 2^{x}=24$
44. $5 \cdot 2^{x}-152=8$
45. Suppose $(0,4)$ and $(2,36)$ are on the graph of an exponential function.
a. Use $(0,4)$ in the general form of an exponential function, $y=a \cdot b^{x}$, to find the value of the constant $a$.
b. Use your answer from part (a) and $(2,36)$ to find the value of the constant $b$.
c. Write a rule for the function.
d. Evaluate the function for $x=-2$ and $x=4$.
46. A population of 150 dandelions is growing in a meadow. A computer model predicts that the population will increase by a factor of 1.2 every week. Write an equation to show the population as a function of time $x$, in which $x$ is the number of weeks. What will be the approximate population after 4 weeks?
47. A bank offers a special account in which they accept an initial deposit of 3 cents, and then double the value of the account every month.
a. Write an equation to show the value of the account in dollars as a function of $x$ months. What is the value in the account after 3 months?
b. Select Techniques to Solve Problems (1)(C) Select a technique such as number sense, mental math, or estimation to determine when the value of the account will be more than $\$ 15$.

## TEXAS End-of-Course PRACTICE

48. A population of 30 swans doubles every 10 yr . Which graph represents the population growth?
A.

C.

B.

D.

49. Which equation do you get when you solve $y=2 x-12$ for $x$ ?
F. $x=y-6$
G. $x=y+6$
H. $x=0.5 y-6$
J. $x=0.5 y+6$

## TEKS FOCUS

TEKS (9)(B) Interpret the meaning of the values of $a$ and $b$ in exponential functions of the form $f(x)=a b^{x}$ in real-world problems.

TEKS (1)(A) Apply mathematics to problems arising in everyday life, society, and the workplace.

Additional TEKS (1)(G), (9)(C), (9)(D)

## VOCABULARY

- Compound interest - interest paid on both the principal and the interest that has already been paid
- Decay factor - 1 minus the percent rate of change expressed as a decimal for an exponential decay situation; the base $b$ in the function $y=a \cdot b^{x}$
- Exponential decay - a situation that can be modeled with a function of the form $y=a \cdot b^{x}$, where $a>0$ and $0<b<1$
- Exponential growth - a situation that can be modeled with a function of the form $y=a \cdot b^{x}$, where $a>0$ and $b>1$
- Growth factor - 1 plus the percent rate of change expressed as a decimal for an exponential growth situation; the base $b$ in the function $y=a \cdot b^{x}$
- Apply - use knowledge or information for a specific purpose, such as solving a problem


## ESSENTIAL UNDERSTANDING

An exponential function can model growth or decay of an initial amount.

## Key Concept Exponential Growth

## Definitions

Exponential growth can be modeled by the function $y=a \cdot b^{x}$, where $a>0$ and $b>1$. The base $b$ is the growth factor, which equals 1 plus the percent rate of change expressed as a decimal.

Algebra

Graph


The base, which is greater than 1 , is the growth factor.

## E note

## Key Concept Compound Interest

When a bank pays interest on both the principal and the interest an account has already earned, the bank is paying compound interest. You can use the following formula to find the balance of an account that earns compound interest.

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad \begin{aligned}
A & =\text { the balance } \\
P & =\text { the principal (the initial deposit) } \\
r & =\text { the annual interest rate (expressed as a decimal) } \\
n & =\text { the number of times interest is compounded per year } \\
t & =\text { the time in years }
\end{aligned}
$$

## Key Concept Exponential Decay

## Definitions

Exponential decay can be modeled by the function $y=a \cdot b^{x}$, where $a>0$ and $0<b<1$. The base $b$ is the decay factor, which equals 1 minus the percent rate of change expressed as a decimal.

Algebra The initial amount (when $x=0$ ) is also the $y$-intercept.

$$
y=\underset{\uparrow}{\downarrow} \cdot b^{x} \leftarrow \text { exponent }
$$

The base is the decay factor.

Graph


## Problem 1

## Graphing an Exponential Growth Function

You are observing a bacteria population in a laboratory culture. The population doubles every 30 min . The function $p(x)=500 \cdot 2^{x}$ models the population, where $x$ is the number of 30 -minute periods since you began observing.

Think
Does the point $(-1,250)$ have meaning in this situation? $x=-1$ corresponds to the time 30 min before you start observing the bacteria population. Thirty minutes before you start, the number of bacteria is 250 .

A Graph the function $p(x)=500 \cdot 2^{x}$, identifying the $y$-intercept and asymptote.

The equation $p(x)=500 \cdot 2^{x}$ is in the form $y=a \cdot b^{x}$, where $a=500$ and $b=2$. Since $b>1$, the function represents exponential growth. The graph rises from left to right and has a $y$-intercept of 500 . The asymptote is the $x$-axis, with the graph approaching the $x$-axis as $x$ decreases.

B What is the meaning of the $y$-intercept in this situation?


The $y$-intercept 500 occurs when $x$ is 0 , which corresponds to the time you start observing the population. There are 500 bacteria present when you start observing.

## Think

When can you use an exponential growth function?
You can use an exponential growth function when an initial amount increases by a fixed percent each time period.

## Modeling Exponential Growth

Economics Since 2005, the amount of money spent at restaurants in the United States has increased about 7\% each year. In 2005, about $\$ 360$ billion was spent at restaurants.

A If the trend continues, about how much will be spent at restaurants in 2015? Relate $y=a \cdot b^{x} \quad$ Use an exponential function.

Define Let $x=$ the number of years since 2005 .
Let $y=$ the annual amount spent at restaurants (in billions of dollars).
Let $a=$ the initial amount spent (in billions of dollars), 360 .
Let $b=$ the growth factor, which is $1+0.07=1.07$.

```
Write y = 360•1.07 }\mp@subsup{}{}{x
```

Use the equation to predict the annual spending in 2015.

$$
y=360 \cdot 1.07^{x}
$$

$$
=360 \cdot 1.07^{10} \quad 2015 \text { is } 10 \text { yr after 2005, so substitute } 10 \text { for } x .
$$

$$
\approx 708 \quad \text { Round to the nearest billion dollars. }
$$

About $\$ 708$ billion will be spent at restaurants in 2015 if the trend continues.
B What is an expression that represents the equivalent monthly increase of spending at U.S. restaurants in 2005 ?

You will need to find an expression of the form $r^{m}$, where $r$ is approximately the monthly growth factor and $m$ is the number of months. You know that $1.07^{x}$ represents the yearly increase where $x$ is the number of years.

$$
\begin{aligned}
1.07^{x} & =1.07^{\frac{12 x}{12}} & & \text { There are } 12 x \text { months in } x \text { years. } \\
& =\left(1.07^{\frac{1}{12}}\right)^{12 x} & & \text { Power raised to a power } \\
& \approx 1.0057^{12 x} & & \text { Simplify. } \\
& =1.0057^{m} & & \text { Let } 12 x=m \text {, the number of months. }
\end{aligned}
$$

The expression $1.0057^{m}$ represents the equivalent monthly increase of spending.

## Problem 3

## Think

Is the formula an exponential growth function?
Yes. You can rewrite the formula as $A=P\left[\left(1+\frac{r}{n}\right)^{n}\right]^{t}$. So, it is an exponential function with initial amount $P$ and growth factor $\left(1+\frac{r}{n}\right)^{n}$.

## Compound Interest

Finance Suppose that when your friend was born, your friend's parents deposited $\$ 2000$ in an account paying $4.5 \%$ interest compounded quarterly. What will the account balance be after 18 yr ?

| Know | Need | Pam |
| :---: | :---: | :---: |
| - $\$ 2000$ principal <br> - $4.5 \%$ interest <br> - interest compounded quarterly | Account balance in 18 yr | Use the compound interest formula. |
| $A=P\left(1+\frac{r}{n}\right)^{n t}$ | Use the compound interest formula. |  |
| $=2000\left(1+\frac{0.045}{4}\right)^{4 \cdot 18}$ | Substitute the values for $P, r, n$, and $t$. |  |
| $=2000(1.01125)^{72}$ | Simplify. |  |

The balance will be $\$ 4475.53$ after 18 yr.

## Problem 4

## Think

How do the equations for exponential growth and decay functions compare?
The general equation for both functions is $f(x)=a b^{x}$, but $b>1$ for growth, and $0<b<1$ for decay.

## Writing an Exponential Decay Function

The value of a function decreases by a factor of 0.3 with every unit increase in $x$. When $x$ is 0 , the value of the function is 12 . Write an exponential function in the form $f(x)=a b^{x}$ to describe the situation.

$$
\begin{array}{ll}
f(x)=a b^{x} & \text { Write the equation for exponential decay. } \\
f(x)=12 \cdot b^{x} & \text { Substitute } 12 \text { for } a, \text { the initial amount or } f(0) . \\
f(x)=12 \cdot 0.3^{x} & \begin{array}{l}
\text { Substitute } 0.3 \text { for } b \text {, the factor by which } f(x) \text { decreases } \\
\text { for every unit increase in } x .
\end{array}
\end{array}
$$

The function that describes the situation is $f(x)=12 \cdot 0.3^{x}$.

## Problem 5

## Graphing an Exponential Decay Function

Graph the function $y=3 \cdot 0.5^{x}$. Identify the $y$-intercept and the asymptote.

The equation $y=3 \cdot 0.5^{x}$ is in the form $y=a \cdot b^{x}$, where $a=3$ and $b=0.5$.

Since $0<b<1$, the function represents exponential decay.

The graph falls from left to right and has a $y$-intercept of 3 .

The asymptote is the $x$-axis, with the graph approaching the $x$-axis as $x$ increases.


## Modeling Exponential Decay STEM

Physics The kilopascal is a unit of measure for atmospheric pressure. The atmospheric pressure at sea level is about 101 kilopascals. For every $1000-\mathrm{m}$ increase in altitude, the pressure decreases about $11.5 \%$. What is the approximate pressure at an altitude of 3000 m ?

Relate $y=a \cdot b^{x} \quad$ Use an exponential function.
Define Let $x=$ the altitude (in thousands of meters).
Let $y=$ the atmospheric pressure (in kilopascals).
Let $a=$ the initial pressure (in kilopascals), 101.
Let $b=$ the decay factor, which is $1-0.115=0.885$.
Write $\quad y=101 \cdot 0.885^{x}$
Use the equation to estimate the pressure at an altitude of 3000 m .

$$
\begin{aligned}
y & =101 \cdot 0.885^{x} & & \\
& =101 \cdot 0.885^{3} & & \text { Substitute } 3 \text { for } x . \\
& \approx 70 & & \text { Round to the nearest kilopascal. }
\end{aligned}
$$

The pressure at an altitude of 3000 m is about 70 kilopascals.

## PRACTICE and APPLICATION EXERCISES

For additional support when completing your homework, go to PearsonTEXAS.com.

1. Apply Mathematics (1)(A) The value of a stock purchase increases by a factor of 1.5 every year. The value of the stock $y$, in dollars, as a function of time $x$, in years, is given by the equation $y=100(1.5)^{x}$. Graph this function and identify the $y$-intercept and the asymptote. What does the $y$-intercept show about the stock?
2. Apply Mathematics (1)(A) A population of strangler figs, a type of vine, was established in the forest many years ago. The total length $y$ of the vines, in feet, over time $x$, in years, is modeled by the equation $y=12(2)^{\frac{x}{5}}$. The value $x=0$ represents the present. Graph this function. What are the $y$-intercept and the asymptote of the graph? What does the $y$-intercept of the graph represent?

3. Explain Mathematical Ideas (1)(G) An exponential function has the form $y=a(b)^{k x}$, where $a$ and $b$ are positive and $b \neq 1$. Without graphing, how do you know whether the function will model exponential growth or decay? Explain your answer.
Identify the initial amount $a$ and the growth factor $b$ in each exponential function.
4. $g(x)=14 \cdot 2^{x}$
5. $y=150 \cdot 1.0894^{x}$
6. $y=25,600 \cdot 1.01^{x}$
7. $f(t)=1.4^{t}$
8. The number of students enrolled at a college is 15,000 and grows $4 \%$ each year.
a. The initial amount $a$ is $\square$.
b. The percent rate of change is $4 \%$, so the growth factor $b$ is $1+\square=\square$.
c. To find the number of students enrolled after one year, you calculate 15,000 •
d. Complete the equation $y=\square \cdot \square$ to find the number of students enrolled after $x$ years.
e. Use your equation to predict the number of students enrolled after 25 yr .
9. Apply Mathematics (1)(A) A population of 100 frogs increases at an annual rate of $22 \%$. How many frogs will there be in 5 years? Write an expression to represent the equivalent monthly population increase rate.

## Find the balance in each account after the given period.

10. $\$ 4000$ principal earning $6 \%$ compounded annually, after 5 yr
11. $\$ 12,000$ principal earning $4.8 \%$ compounded annually, after 7 yr
12. $\$ 500$ principal earning $4 \%$ compounded quarterly, after 6 yr
13. $\$ 5000$ deposit earning $1.5 \%$ compounded quarterly, after 3 yr
14. $\$ 775$ deposit earning $4.25 \%$ compounded annually, after 12 yr
15. $\$ 3500$ deposit earning $6.75 \%$ compounded monthly, after 6 months

Write the exponential function that describes each situation.
16. The value of the function decreases by a factor of $\frac{1}{2}$ with each unit increase in $x$. When $x=0$, the value of the function is 42 .
17. The initial amount of the function is 12 , and then it decreases by a factor of $\frac{4}{5}$ with each unit increase in $x$.
18. The initial value of the function is 3000 , and then it loses $20 \%$ of its value with each unit increase in $x$.
19. Explain Mathematical Ideas (1)(G) The graph of an exponential function passes through the points $(3,100)$ and $(5,25)$. Write a function $f(x)=a b^{x}$ that describes this situation. Explain your reasoning.
20. Apply Mathematics (1)(A) A family buys a car for $\$ 20,000$. The value of the car decreases about $20 \%$ each year. After 6 yr , the family decides to sell the car. Should they sell it for $\$ 4000$ ? Explain.
21. Apply Mathematics (1)(A) You invest $\$ 100$ and expect your money to grow $8 \%$ each year. About how many years will it take for your investment to double?
22. Display Mathematical Ideas (1)(G) Suppose you start a lawn-mowing business and make a profit of $\$ 400$ in the first year. Each year, your profit increases $5 \%$.
a. Write a function that models your annual profit.
b. If you continue your business for 10 yr , what will your total profit be?

Graph the function. Identify the $y$-intercept and the asymptote.
23. $f(x)=3\left(\frac{1}{2}\right)^{x}$
24. $f(x)=0.9\left(\frac{2}{3}\right)^{x}$
25. $f(x)=2(0.1)^{x}+1$
26. Use Multiple Representations to Communicate Mathematical Ideas (1)(D) The graph of an exponential function is decreasing. The $y$-intercept is 300 and the range of the function is $y>60$. Sketch a graph of the function, and write a possible equation for the function.
Identify the initial amount $a$ and the decay factor $b$ in each exponential function.
27. $y=5 \cdot 0.5^{x}$
28. $f(x)=10 \cdot 0.1^{x}$
29. $g(x)=100\left(\frac{2}{3}\right)^{x}$
30. $y=0.1 \cdot 0.9^{x}$
31. Apply Mathematics (1)(A) The population of a city is 45,000 and decreases $2 \%$ each year. If the trend continues, what will the population be after 15 yr ?

State whether each graph shows an exponential growth function, an exponential decay function, or neither.

34. Apply Mathematics (1)(A) Radioactive decay is an example of exponential decay. The half-life of a radioactive substance is the length of time it takes for half of the atoms in a sample of the substance to decay. Cesium-137 is a radioisotope used in radiology where levels are measured in millicuries (mci). Use the graph at the right. Write the equation for the graph of Cesium-137 decay. What is a reasonable estimate of the half-life of cesium-137? What is the asymptote of the graph? Explain what it represents.

Cesium-137 Decay


## TEXAS End-of-Course PRACTICE

35. A new fitness center opens with 120 members. Every month the fitness center increases the number of members by 40 members. How many members will the fitness center have after being open for 8 months?
36. What is the slope of the line that passes through the points $(1,1)$ and $(2,-1)$ ?
37. What is the simplified form of $5^{-2}$ ?

# + <br> 9-3 Modeling Exponential Data 

## TEKS FOCUS

TEKS (9)(E) Write, using technology, exponential functions that provide a reasonable fit to data and make predictions for real-world problems.

TEKS (1)(E) Create and use representations to organize, record, and communicate mathematical ideas.

## VOCABULARY

- Representation - a way to display or describe information. You can use a representation to present mathematical ideas and data.

Additional TEKS (1)(C), (9)(A), (9)(B), (9)(C), (9)(D)

## ESSENTIAL UNDERSTANDING

You can use exponential functions to model some sets of data. When more than three data points suggest an exponential function, you can use the regression feature of a graphing calculator to find an exponential model.

## Modeling Real-World Data

Transportation The data at the right give the value of a used car over time. Which type of function best models the data? Write an equation to model the data.


## Step 1

Graph the data.


The graph curves and does not look quadratic. It may be exponential.

## Step 2

Test for a common ratio.


The value of the car is roughly 0.88 times its value the previous year.

Step 3
Write an exponential model.
Relate $f(x)=a \cdot b^{x}$
Define Let $a=$ the initial value, 12,575 .
Let $b=$ the decay factor, 0.88 .
Write $\quad f(x)=12,575 \cdot 0.88^{x}$

## Step 4

Test two points other than $(0,12,575)$.
Test $(2,9750): \quad$ Test $(4,7540)$ :
$y=12,575 \cdot 0.88^{2}$
$y=12,575 \cdot 0.88^{4}$
$y \approx 9738$
$y \approx 7541$
The point $(2,9738)$ is close to the data point $(2,9750)$. The point $(4,7541)$ is close to the data point $(4,7540)$. The equation $y=12,575 \cdot 0.88^{x}$ models the data.

## Problem 2

## Modeling Exponential Data Using Technology

The table shows the numbers of bacteria in a culture after the given numbers of hours. Predict when the number of bacteria will reach $\mathbf{1 0 , 0 0 0}$.

You can select technology as a tool to help you solve this problem.
Using a graphing calculator, you can determine whether an exponential function is a reasonable model.

Step 1 Enter the data.


Step 2 Use ExpReg. The model is $f(x)=1779.404(1.121)^{x}$.



Step 3 Graph the data and the function to confirm the model.


## Problem 2 continued

## Think

How can I see $x$-values that are closer together in the table?
Go into the table setup for your calculator. You can change the increment between successive $x$-values.

Step 4 Use the model to predict how long it will take for the number of bacteria to reach 10,000 . Use tables or the trace feature on the graph. You may need to adjust the viewing window.


The number of bacteria will reach 10,000 at about 15 hours 12 minutes.

## Problem 3

## Analyzing Features of Exponential Data

A ball is dropped from a height of 75 in . The heights of the ball's rebounds after subsequent bounces are shown in the table.

What is an exponential model for this data?
Enter the data into lists in a graphing
 calculator, and perform an exponential regression on the data. An exponential model for the data is $f(x)=75 \cdot 0.62^{x}$.

## Think

How does the domain for the real-world data differ from the domain for the function? In the function, $x$ could be any real number. The bounce number, however, must come from the set $\{0,1,2, \ldots\}$. So the domain is the set of whole numbers.
$B$ Identify the domain and range of the function in part (A) in the context of the problem. Express the domain and range using inequalities.

The domain is the bounce number. The bounce number cannot be negative, so the domain is $x \geq 0$, where $x$ is an integer. The range is the height of the rebound. The height starts at 75 in . and then decreases, but cannot be negative. It will get closer and closer to 0 , but never reach 0 according to the model. The range is $0<f(x) \leq 75$, where $f(x)=75 \cdot 0.62^{x}$.
What is the $y$-intercept of the function in part (A), and what does it mean in the context of the problem?

The $y$-intercept is the $y$-value when $x=0$. When $x=0, f(x)=75 \cdot 0.62^{0}=75$, so the $y$-intercept is 75 . In the context of the problem, this is the height of the ball after drop 0 , or the initial height of the ball, 75 in .

An exponential function is a function in the form $f(x)=a \cdot b^{x}$. What are $a$ and $b$ in the function in part (A)? What do $a$ and $b$ mean in the context of the problem?
In the function $f(x)=75 \cdot 0.62^{x}, a=75$, and $b=0.62$.
The value of $a$ is the initial height of the ball, 75 in . The value of $b$ is the ratio between rebounds. Each rebound is 0.62 , or $62 \%$, of the height of the previous rebound.

For additional support when completing your homework, go to PearsonTEXAS.com.

Identify the domain and range of the function. Express the range using an inequality.

1. $f(x)=15 \cdot 1.79^{x}$
2. $f(x)=460 \cdot 0.17^{x}$
3. $f(x)=-3.5 \cdot 12^{x}$
4. $f(x)=-24 \cdot 0.999^{x}$

Find $f(0), f(4)$, and $f(-2)$ for each function. Round to the nearest tenth.
5. $f(x)=8 \cdot 2.02^{x}$
6. $f(x)=107 \cdot 0.387^{x}$
7. $f(x)=-6.4 \cdot 1.49^{x}$
8. $f(x)=-5 \cdot 0.835^{x}$
9. Select Tools to Solve Problems (1)(C) The table at the right shows the length and weight of a species of fish.
a. Select one of the following tools to use to

| Fish Lengths and Weights |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Length (in.) | 8 | 10 | 12 | 14 | 16 |
| Weight (lb) | 1.20 | 1.40 | 1.64 | 1.92 | 2.25 | find an exponential model for the data and predict the weight of a fish that is 24 in . long. Explain your choice.

paper and pencil technology manipulatives
b. Find an exponential model for the data. Predict the weight of a fish that is 24 in. long.
10. Use Multiple Representations to Communicate Mathematical Ideas (1)(D) A culture is started with 50,000 bacteria, and then an antibiotic is added to the culture. The table at the right shows the number of bacteria after the antibiotic is added.
a. Find an exponential model that is a reasonable fit for the data.
b. How long will it take for the number of bacteria to fall below 5000 ?

| Bacteria Population |  |
| :---: | :---: |
| Time Since Antibiotic <br> Added (hr) | Number of <br> Bacteria |
| 0 | 50,000 |
| 1 | 42,100 |
| 2 | 35,448 |
| 3 | 29,847 |
| 4 | 25,131 |
|  |  |

c. What is the $y$-intercept of your function? What does it mean in the context of the problem?
d. What are the values of $a$ and $b$ for your function? What do these values mean in the context of the problem?
e. What are the real-world domain and range of the function? Express each using inequalities.
f. Graph the function.
11. Select Tools to Solve Problems (1)(C) The table below shows the balance in Mr. Harris's retirement savings account for several years after he retired.

a. Use technology to find an exponential model that is a reasonable fit for the data.
b. Predict when the balance will be less than $\$ 100,000$, assuming that the pattern continues.
12. Use Representations to Communicate Mathematical Ideas (1)(E) Samantha took out a loan that does not require her to make any payments for 12 months, although interest is being charged to her account. The table below shows the total amount she owes each month after taking the loan.

| Loan Balance |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Month | 0 | 1 | 2 | 3 | 4 |
| Total Amount <br> Owed (\$) | 3700 | 3752 | 3808 | 3858 | 3912 |

a. Find an exponential model that is a reasonable fit for the data.
b. How much will Samantha owe at the end of 12 months, assuming she does not make any payments before then?
c. What is the $y$-intercept of your function? What does it mean in the context of the problem?
d. What are the values of $a$ and $b$ for your function? What do these values mean in the context of the problem?
e. What are the real-world domain and range of the function? Express each using inequalities.
f. Graph the function.
13. Apply Mathematics (1)(A) The function $f(x)=0.973 \cdot 1.1872^{x}$ represents the value in millions of dollars of a software company, where $x$ is the number of years since the company was started.
a. What is the $y$-intercept of the function, and what does it mean in the context of the problem?
b. What are the $a$ and $b$ values of the function, and what do these values mean in the context of the problem?
c. According to the model, predict what the value of the company will be 10 years after it was started.
14. The function $f(x)=3462 \cdot 0.925^{x}$ represents the population of a town, where $x$ is the number of years since 1996.
a. What is the $y$-intercept of the function, and what does it mean in the context of the problem?
b. What are the $a$ and $b$ values of the function, and what do these values mean in the context of the problem?
c. According to the model, predict what the population will be in 2020.


For $f(x)=a \cdot b^{x}$, determine whether each statement is always, sometimes, or never true.
15. The $y$-intercept is $a$.
16. The value of $f(x)$ increases as the value of $x$ increases.
17. If $a>0$ and $b>0$, the graph of the function is entirely in Quadrant 1 of the coordinate plane.
18. The range includes negative numbers.

## TEXAS End-of-Course PRACTICE

19. What is the range of $f(x)=43 \cdot 2.4^{x}$ ?
A. $f(x)>0$
B. $f(x)>2.4$
C. $f(x)>103.2$
D. $0<f(x)<43$
20. The function $f(x)=24,950 \cdot 0.7932^{x}$ models the value of a car, where $x$ is the age of the car in years. How old will the car be when the value of the car becomes less than $\$ 5000$ ?
F. 2 years
G. 3 years
H. 5 years
J. 7 years
21. The value of Edward's savings account is modeled by the function $f(x)=975 \cdot 1.028^{x}$, where $x$ is the number of years since the account was opened. In how many years will the account value be double the original amount?
A. 20
B. 25
C. 30
D. 35
22. The table shows the number of contestants remaining after each round of a singing competition. What is an exponential model for the data? Use your model to predict how many rounds are required to select a single winner.

| Singing Competition |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Round | 0 | 1 | 2 | 3 | 4 |
| Number of <br> Contestants Remaining | 150 | 90 | 54 | 32 | 19 |

## Topic 9 Review

## TOPIC VOCABULARY

- asymptote, p. 386
- compound interest, p. 396
- decay factor, p. 396
- exponential decay, p. 396
- exponential function, p. 386
- exponential growth, p. 395
- growth factor, p. 395


## Check Your Understanding

Choose the correct term to complete each sentence.

1. For a function $y=a \cdot b^{x}$, where $a>0$ and $b>1, b$ is the ?.
2. For a function $y=a \cdot b^{x}$, where $a>0$ and $0<b<1, b$ is the ?.
3. The function $y=a \cdot b^{x}$ models ? for $a>0$ and $b>1$.
4. The function $y=a \cdot b^{x}$ models ? for $a>0$ and $0<b<1$.

## 9-1 Exponential Functions

## Quick Review

An exponential function involves repeated multiplication of an initial amount $a$ by the same positive number $b$. The general form of an exponential function is $y=a \cdot b^{x}$, where $a \neq 0, b>0$, and $b \neq 1$.

## Example

What is the graph of $y=\frac{1}{2} \cdot 5^{x}$ ?
Make a table of values. Graph the ordered pairs.


## Exercises

Evaluate each function for the domain $\{1,2,3\}$.
5. $f(x)=4^{x}$
6. $y=0.01^{x}$
7. $y=40\left(\frac{1}{2}\right)^{x}$
8. $f(x)=3 \cdot 2^{x}$

## Graph each function.

9. $f(x)=2.5^{x}$
10. $y=0.5(0.5)^{x}$
11. $f(x)=\frac{1}{2} \cdot 3^{x}$
12. $y=0.1^{x}$
13. A population of 50 bacteria in a laboratory culture doubles every 30 min . The function $p(x)=50 \cdot 2^{x}$ models the population, where $x$ is the number of 30-min periods.
a. How many bacteria will there be after 2 h ?
b. How many bacteria will there be after 1 day?

## 9-2 Exponential Growth and Decay

## Quick Review

When $a>0$ and $b>1$, the function $y=a \cdot b^{x}$ models exponential growth. The base $b$ is called the growth factor. When $a>0$ and $0<b<1$, the function $y=a \cdot b^{x}$ models exponential decay. In this case the base $b$ is called the decay factor.

## Example

The population of a city is 25,000 and decreases $1 \%$ each year. Predict the population after 6 yr .

$$
\begin{aligned}
y & =25,000 \cdot 0.99^{x} & & \text { Exponential decay function } \\
& =25,000 \cdot 0.99^{6} & & \text { Substitute } 6 \text { for } x . \\
& \approx 23,537 & & \text { Simplify. }
\end{aligned}
$$

The population will be about 23,537 after 6 yr.

## Exercises

Tell whether the function represents exponential growth or exponential decay. Identify the growth or decay factor.
14. $y=5.2 \cdot 3^{x}$
15. $f(x)=7 \cdot 0.32^{x}$
16. $y=0.15\left(\frac{3}{2}\right)^{x}$
17. $g(x)=1.3\left(\frac{1}{4}\right)^{x}$
18. Suppose $\$ 2000$ is deposited in an account paying $2.5 \%$ interest compounded quarterly. What will the account balance be after 12 yr ?
19. A band performs a free concert in a local park. There are 200 people in the crowd at the start of the concert. The number of people in the crowd grows $15 \%$ every half hour. How many people are in the crowd after 3 h ? Round to the nearest person.

## 9-3 Modeling Exponential Data

## Quick Review

For some data, an exponential model is a good fit. You can enter the data into your calculator and use the regression feature to find an exponential model.

You can then use your model to answer questions about the data by examining the graphs or tables, or by using the function.
Exponential functions are written in the form $f(x)=a \cdot b^{x}$.

## Example

The table shows the value of a computer. Find an exponential model, and find the computer's value after 7 years.

| Computer Value |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Age | 0 | 1 | 2 | 3 | 4 |
| Value (\$) | 2200 | 1382 | 868 | 545 | 342 |

The data appear to be exponential. The calculator gives a regression model of $f(x)=2200 \cdot 0.628^{x}$.
Use the table and the exponential model to see that the computer will be worth about $\$ 85$ after 7 years.

## Exercises

The table shows the population of geese in a park beginning in the year 2003. Use the table to answer Exercises 20-25.

20. Find an exponential model to best fit the data.
21. Predict the population in the year 2015.
22. According to the model, in what year will the population first be greater than 150 geese?
23. What is the $y$-intercept of your function, and what does it mean in the context of the problem?
24. What are the $a$ and $b$ values of your function, and what do they mean in the context of the problem?
25. What are the real-world domain and range of the function?

## Multiple Choice

## Read each question. Then write the letter of the correct answer on your paper.

1. If the graph of the function $y=x^{2}-6$ were shifted 3 units down, which equation could represent the shifted graph?
A. $y=3 x^{2}-6$
B. $y=x^{2}-3$
C. $y=x^{2}-9$
D. $y=3 x^{2}-3$
2. Which ordered pair is a solution of $3 x-y<20$ ?
F. $(7,1)$
G. $(5,-6)$
H. $(8,0)$
J. $(-1,-4)$
3. Brianna has a cylindrical glass that is 15 cm tall. The diameter of the base is 5 cm . About how much water can the glass hold?
A. $75 \mathrm{~cm}^{3}$
B. $118 \mathrm{~cm}^{3}$
C. $295 \mathrm{~cm}^{3}$
D. $1178 \mathrm{~cm}^{3}$
4. What is the solution of this system of equations?

$$
\begin{aligned}
-3 x+y & =-2 \\
x+y & =-6
\end{aligned}
$$

F. $(-2,-6)$
G. $(-1,-5)$
H. $(1,5)$
J. $(-3,-2)$
5. Jeremiah made the graph at the right to show how much money he saved after working for a few months. Which of the following represents the amount of money Jeremiah had when he started working?

A. $x$-intercept
B. $y$-intercept
C. slope
D. domain
6. Eduardo is drawing the graph of a function. Each time the $x$-value increases by 3 , the $y$-value decreases by 4 . The function includes the point $(1,3)$. Which could be Eduardo's graph?
F.

H.

G.

J.

7. The data shown in the table at the right represent points on a line. What is the $y$-intercept of the line?
A. -5
B. -3
C. 0

| $x$ | $y$ |
| :---: | :---: |
| 2 | -1 |
| 3 | 1 |
| 4 | 3 |
| 5 | 5 |

D. 2.5
8. What is the factored form of $3 x^{2}+2 x y-8 y^{2}$ ?
F. $(x+y)(3 x-8 y)$
G. $(x+4 y)(3 x-2 y)$
H. $(x+2 y)(3 x-4 y)$
J. $(3 x+2 y)(x-4 y)$
9. The formula for the area $A$ of a circle is $A=\pi r^{2}$, where $r$ is the radius of the circle. Which equation can be used to find the radius?
A. $r=\frac{\sqrt{A \pi}}{\pi}$
B. $r=\frac{A}{\pi}$
C. $r=\frac{A^{2}}{\pi}$
D. $r=\sqrt{A \pi}$
10. Which function has $y$-values that always increase when the corresponding $x$-values increase?
F. $y=|x|+2$
G. $y=x^{2}+2$
H. $y=x+2$
J. $y=-x-1$
11. What is the solution of this system of equations?

$$
\begin{aligned}
& x+2 y=23 \\
& 4 x-y=-7
\end{aligned}
$$

A. $(1,11)$
B. $(-11,1)$
C. $(-1,-11)$
D. $(11,1)$

## Gridded Response

12. The formula $h=-16 t^{2}+c$ can be used to find the height $h$, in feet, of a falling object $t$ seconds after it is dropped from a height of $c$ feet. Suppose an object falls from a height of 40 ft . How long, in seconds, will the object take to reach the ground? Round your answer to the nearest tenth.
13. A 25 -foot ladder rests against a wall. The top of the ladder reaches 20 feet high on the wall. How far away from the wall is the bottom of the ladder in feet?

14. What is the fifth term in the sequence below?

$$
3.25,4,4.75,5.5, \ldots
$$

15. What is the solution of the following proportion?

$$
\frac{-a}{4}=\frac{-3(a-2)}{6}
$$

16. Mariah made a model of a square pyramid. The height $h$ of the pyramid is 6 in . The area of the base $B$ is 36 in. ${ }^{2}$. What is the volume $V$, in cubic inches, of the pyramid? Use the formula $V=\frac{1}{3} B h$.

## Constructed Response

17. The list below shows the heights, in inches, of the students in Corey's class.

$$
60,64,58,57,60,65,51,53,57,56
$$

How many students are more than 5 ft tall?
18. Write the system of inequalities for the graph below. Show your work.

19. Mr. Wong drove to the grocery store. The graph at the right shows his distance from home during the drive. How many times did Mr. Wong stop the car before reaching the grocery store?

20. The volume of a rectangular prism is $720 \mathrm{in} .^{3}$. The height of the prism is 10 in . The width is 4 in . What is the length, in inches?
21. What is the slope of the line below?

22. Your cellphone plan costs $\$ 39.99$ per month plus $\$ .10$ for every text message that you receive or send. This month, you receive 7 text messages and send 10 text messages. What is your bill, in dollars, for this month?

## Topic 9

## Lesson 9-1

Evaluate each function over the domain $\{-1,0,1,2\}$. As the values of the domain increase, do the values of the function increase or decrease?

1. $y=3^{x}$
2. $y=\left(\frac{3}{4}\right)^{x}$
3. $y=1.5^{x}$
4. $y=\left(\frac{1}{2}\right) \cdot 3^{x}$
5. $y=-3 \cdot 7^{x}$
6. $y=-(4)^{x}$
7. $y=3 \cdot\left(\frac{1}{5}\right)^{x}$
8. $y=2^{x}$
9. $y=2 \cdot 3^{x}$
10. $y=(0.8)^{x}$
11. $y=2.5^{x}$
12. $y=-4 \cdot(0.2)^{x}$

Graph each exponential function. Identify the domain, range, $y$-intercept, and asymptote.
13. $y=\frac{1}{2} \cdot 3^{x}$
14. $y=-4 \cdot 2^{x}$
15. $y=4 \cdot(0.3)^{x}$

Write and solve an exponential equation to answer each question.
16. Suppose an investment of $\$ 5,000$ doubles every 12 years. How much is the investment worth after 36 years? After 48 years?
17. Suppose 15 animals are taken to an island, and then their population triples every 8 months. How many animals will there be in 4 years?
18. The population of a city this year is 34,500 . The population is expected to grow by $3 \%$ each year. What will the population of the city be in 12 years?

## Lesson 9-2

Identify each function as exponential growth or exponential decay. Then identify the growth factor or decay factor.
19. $y=8^{x}$
20. $y=\frac{3}{4} 2^{x}$
21. $y=9\left(\frac{1}{2}\right)^{x}$
22. $y=4 \cdot 9^{x}$
23. $y=0.65^{x}$
24. $y=3 \cdot 1.5^{x}$
25. $y=\frac{2}{5}\left(\frac{1}{4}\right)^{x}$
26. $y=0.1 \cdot 0.9^{x}$
27. $y=0.7 \cdot 3.3^{x}$

Graph each exponential function, and identify the $\boldsymbol{y}$-intercept and the asymptote.
28. $y=\frac{1}{2}\left(\frac{1}{4}\right)^{x}$
29. $y=4 \cdot(0.2)^{x}$
30. $y=3.5^{x}$

## Lesson 9-2 continued

## Write an exponential function that describes each situation.

31. The value of a function decreases by a factor of 0.6 with every unit increase in $x$. When $x=0$, the value of the function is 10 .
32. The value of a function increases by a factor of $8.5 \%$. When $x=0$, the value of the function is 22 .

## Write an exponential function that describes each situation. Find the balance in each account after the given period.

33. $\$ 200$ principal earning $4 \%$ compounded annually, after 5 years
34. $\$ 1000$ principal earning $3.6 \%$ compounded monthly, after 10 years
35. $\$ 3000$ investment losing $8 \%$ compounded annually, after 3 years

## Find the balance in each account.

36. You deposit $\$ 2500$ in a savings account with $3 \%$ interest compounded annually. What is the balance in the account after 6 years?
37. You deposit $\$ 750$ in an account with $7 \%$ interest compounded semiannually. What is the balance in the account after 4 years?
38. You deposit $\$ 520$ in an account with $4 \%$ interest compounded monthly. What is the balance in the account after 5 years?

## Lesson 9-3

39. The table shows the population (in thousands) of the country of Algeria from 1950 to 1990, where $x$ is the number of years since 1950 .

| Year Since 1950 | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Population (thousands) | 8893 | 9842 | 10,909 | 11,963 | 12,932 | 16,140 | 18,806 | 22,008 | 25,190 |

Source: United States Census Bureau
a. Find an exponential model that is a reasonable fit for the data.
b. What is the predicted population of Algeria in 2020, assuming that this trend continues?
40. Camilla had a collection of 140 coins from all over the world. She decided to give some coins away to friends. The table below shows the number of coins remaining in her collection.

| Day | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Number of Coins | 140 | 102 | 76 | 55 | 33 |

a. Find an exponential model that is a reasonable fit for the data.
b. How many coins will Camilla have left after 7 days, assuming that her pattern continues?

## Reference

## Table 1 | Measures

|  | United States Customary | Metric |
| :---: | :---: | :---: |
| Length | $\begin{aligned} 12 \text { inches }(\mathrm{in} .) & =1 \text { foot }(\mathrm{ft}) \\ 36 \mathrm{in.} & =1 \text { yard }(\mathrm{yd}) \\ 3 \mathrm{ft} & =1 \text { yard } \\ 5280 \mathrm{ft} & =1 \text { mile }(\mathrm{mi}) \\ 1760 \mathrm{yd} & =1 \text { mile } \end{aligned}$ | $\begin{aligned} 10 \text { millimeters }(\mathrm{mm}) & =1 \text { centimeter }(\mathrm{cm}) \\ 100 \mathrm{~cm} & =1 \text { meter }(\mathrm{m}) \\ 1000 \mathrm{~mm} & =1 \text { meter } \\ 1000 \mathrm{~m} & =1 \text { kilometer }(\mathrm{km}) \end{aligned}$ |
| Area | $\begin{aligned} 144 \text { square inches }\left(\mathrm{in.}^{2}\right) & =1 \text { square foot }\left(\mathrm{ft}^{2}\right) \\ 9 \mathrm{ft}^{2} & =1 \text { square yard }\left(\mathrm{yd}^{2}\right) \\ 43,560 \mathrm{ft}^{2} & =1 \text { acre (a) } \\ 4840 \mathrm{yd}^{2} & =1 \text { acre } \end{aligned}$ | $\begin{aligned} 100 \text { square millimeters }\left(\mathrm{mm}^{2}\right) & =1 \text { square centimeter }\left(\mathrm{cm}^{2}\right) \\ 10,000 \mathrm{~cm}^{2} & =1 \text { square meter }\left(\mathrm{m}^{2}\right) \\ 10,000 \mathrm{~m}^{2} & =1 \text { hectare (ha) } \end{aligned}$ |
| Volume | $\begin{aligned} 1728 \text { cubic inches }\left(\mathrm{in} . .^{3}\right) & =1 \text { cubic foot }\left(\mathrm{ft}^{3}\right) \\ 27 \mathrm{ft}^{3} & =1 \text { cubic yard }\left(\mathrm{yd}^{3}\right) \end{aligned}$ | $\begin{aligned} 1000 \text { cubic millimeters }\left(\mathrm{mm}^{3}\right) & =1 \text { cubic centimeter }\left(\mathrm{cm}^{3}\right) \\ 1,000,000 \mathrm{~cm}^{3} & =1 \text { cubic meter }\left(\mathrm{m}^{3}\right) \end{aligned}$ |
| Liquid Capacity | $\begin{aligned} 8 \text { fluid ounces (fl oz) } & =1 \text { cup (c) } \\ 2 \mathrm{c} & =1 \text { pint (pt) } \\ 2 \mathrm{pt} & =1 \text { quart (qt) } \\ 4 \mathrm{qt} & =1 \text { gallon (gal) } \end{aligned}$ | $\begin{aligned} 1000 \text { milliliters }(\mathrm{mL}) & =1 \text { liter }(\mathrm{L}) \\ 1000 \mathrm{~L} & =1 \text { kiloliter (kL) } \end{aligned}$ |
| Weight or Mass | $\begin{aligned} 16 \text { ounces }(o z) & =1 \text { pound }(\mathrm{lb}) \\ 2000 \text { pounds } & =1 \text { ton }(\mathrm{t}) \end{aligned}$ | $\begin{aligned} 1000 \text { milligrams }(\mathrm{mg}) & =1 \text { gram }(\mathrm{g}) \\ 1000 \mathrm{~g} & =1 \text { kilogram }(\mathrm{kg}) \\ 1000 \mathrm{~kg} & =1 \text { metric ton } \end{aligned}$ |
| Temperature | $32^{\circ} \mathrm{F}=$ freezing point of water <br> $98.6^{\circ} \mathrm{F}=$ normal human body temperature <br> $212^{\circ} \mathrm{F}=$ boiling point of water | $0^{\circ} \mathrm{C}=$ freezing point of water <br> $37^{\circ} \mathrm{C}=$ normal human body temperature <br> $100^{\circ} \mathrm{C}=$ boiling point of water |
|  | Customary Units and Metric Units |  |
| Length | $\begin{aligned} 1 \mathrm{in.} & =2.54 \mathrm{~cm} \\ 1 \mathrm{mi} & \approx 1.61 \mathrm{~km} \\ 1 \mathrm{ft} & \approx 0.305 \mathrm{~m} \end{aligned}$ |  |
| Capacity | $1 \mathrm{gt} \approx 0.946 \mathrm{~L}$ |  |
| Weight and Mass | $\begin{aligned} & 1 \mathrm{oz} \approx 28.4 \mathrm{~g} \\ & 1 \mathrm{lb} \approx 0.454 \mathrm{~kg} \end{aligned}$ |  |


| Time |  |  |  |
| ---: | :--- | ---: | :--- |
| 60 seconds $(s)$ | $=1$ minute $(\mathrm{min})$ | 4 weeks (approx.) $=1$ month $(\mathrm{mo})$ | 12 months $=1$ year |
| 60 minutes | $=1$ hour $(h)$ | 365 days $=1$ year $(\mathrm{yr})$ | 10 years $=1$ decade |
| 24 hours | $=1$ day $(\mathrm{d})$ | 52 weeks (approx.) $=1$ year | 100 years $=1$ century |
| 7 days | $=1$ week $(\mathrm{wk})$ |  |  |

## Table 2 Reading Math Symbols

| Symbols | Words |
| :---: | :---: |
| - | multiplication sign, times ( $\times$ ) |
| = | equals |
| $\stackrel{?}{\underline{1}}$ | Are the statements equal? |
| $\approx$ | is approximately equal to |
| F | is not equal to |
| $<$ | is less than |
| > | is greater than |
| $\leq$ | is less than or equal to |
| $\geq$ | is greater than or equal to |
| $\cong$ | is congruent to |
| $\pm$ | plus or minus |
| () | parentheses for grouping |
| [] | brackets for grouping |
| \{\} | set braces |
| \% | percent |
| \|a| | absolute value of a |
| ... | and so on |
| -a | opposite of a |
| $\pi$ | pi, an irrational number, approximately equal to 3.14 |
| - | degree(s) |
| $a^{n}$ | $n$th power of a |
| $\sqrt{x}$ | nonnegative square root of $x$ |


| Symbols | Words |
| :---: | :---: |
| $\frac{1}{a}, a \neq 0$ | reciprocal of a |
| $a^{-n}$ | $\frac{1}{a^{n}}, a \neq 0$ |
| $\overleftrightarrow{A B}$ | line through points $A$ and $B$ |
| $\overline{A B}$ | segment with endpoints $A$ and $B$ |
| $A B$ | length of $\overline{A B}$; distance between points $A$ and $B$ |
| $\angle A$ | angle $A$ |
| $m \angle A$ | measure of angle $A$ |
| $\triangle A B C$ | triangle $A B C$ |
| $(x, y)$ | ordered pair |
| $x_{1}, x_{2}$ | specific values of the variable $x$ |
| $y_{1}, y_{2}$, | specific values of the variable $y$ |
| $f(x)$ | $f$ of $x$; the function value at $x$ |
| m | slope of a line |
| $b$ | $y$-intercept of a line |
| $a: b$ | ratio of $a$ to $b$ |
| $\wedge$ | raised to a power (in a spreadsheet formula) |
| * | multiply (in a spreadsheet formula) |
| 1 | divide (in a spreadsheet formula) |

## Properties and Formulas

## Order of Operations

1. Perform an operation(s) inside grouping symbols.
2. Simplify powers.
3. Multiply and divide from left to right
4. Add and subtract from left to right.

Commutative Property of Addition
For every real number $a$ and $b, a+b=b+a$.
Commutative Property of Multiplication
For every real number $a$ and $b, a \cdot b=b \cdot a$.

## Associative Property of Addition

For every real number $a, b$, and $c$,
$(a+b)+c=a+(b+c)$.

## Associative Property of Multiplication

For every real number $a, b$, and $c$,
$(a \cdot b) \cdot c=a \cdot(b \cdot c)$.

## Identity Property of Addition

For every real number $a, a+0=a$.
Identity Property of Multiplication
For every real number $a, 1 \cdot a=a$.
Multiplication Property of -1
For every real number $a,-1 \cdot a=-a$.

## Zero Property of Multiplication

For every real number $a, a \cdot 0=0$.

## Inverse Property of Addition

For every real number $a$, there is an additive inverse $-a$ such that $a+(-a)=0$.

## Inverse Property of Multiplication

For every nonzero number $a$, there is a multiplicative inverse such that $a \cdot \frac{1}{a}=1$.

## Distributive Property

For every real number $a, b$, and $c$ :
$a(b+c)=a b+a c$
$(b+c) a=b a+c a$
$a(b-c)=a b-a c$
$(b-c) a=b a-c a$
Addition Property of Equality
For every real number $a, b$, and $c$, if $a=b$, then $a+c=b+c$.

## Subtraction Property of Equality

For every real number $a, b$, and $c$, if $a=b$, then $a-c=b-c$.

## Multiplication Property of Equality

For every real number $a, b$, and $c$, if $a=b$, then $a \cdot c=b \cdot c$.

## Division Property of Equality

For every real number $a, b$, and $c$, where $c \neq 0$, if $a=b$, then $\frac{a}{c}=\frac{b}{c}$.

## Percent Proportion

$\frac{a}{b}=\frac{p}{100}$, where $b \neq 0$.

## Percent Equation

$a=p \% \cdot b$, where $b \neq 0$.

## Simple Interest Formula

I = prt

## Percent of Change

$p \%=\frac{\text { amount of increase or decrease }}{\text { original amount }}$
amount of increase $=$ new amount - original amount
amount of decrease $=$ original amount - new amount

## Relative Error

relative error $=\frac{\mid \text { measured or estimated value }- \text { actual value } \mid}{\text { actual value }}$
The following properties of inequality are also true for $\geq$ and $\leq$

## Addition Property of Inequality

For every real number $a, b$, and $c$,
if $a>b$, then $a+c>b+c$;
if $a<b$, then $a+c<b+c$.

## Subtraction Property of Inequality

For every real number $a, b$, and $c$,
if $a>b$, then $a-c>b-c$;
if $a<b$, then $a-c<b-c$.

## Multiplication Property of Inequality

For every real number $a, b$, and $c$, where $c>0$,
if $a>b$, then $a c>b c$;
if $a<b$, then $a c<b c$.
For every real number $a, b$, and $c$, where $c<0$,
if $a>b$, then $a c<b c$;
if $a<b$, then $a c>b c$.
Division Property of Inequality
For every real number $a, b$, and $c$, where $c>0$,
if $a>b$, then $\frac{a}{c}>\frac{b}{c}$;
if $a<b$, then $\frac{a}{c}<\frac{b}{c}$.
For every real number $a, b$, and $c$, where $c<0$,
if $a>b$, then $\frac{a}{c}<\frac{b}{c}$;
if $a<b$, then $\frac{a}{c}>\frac{b}{c}$.

## Reflexive Property of Equality

For every real number $a, a=a$.

## Symmetric Property of Equality

For every real number $a$ and $b$,
if $a=b$, then $b=a$.
Transitive Property of Equality
For every real number $a, b$, and $c$,
if $a=b$ and $b=c$, then $a=c$.

## Transitive Property of Inequality

For every real number $a, b$, and $c$, if $a<b$ and $b<c$, then $a<c$.

```
Topic 1 Solving Equations and Inequalities
Distance Traveled
\(d=r t\)
Temperature
\(C=\frac{5}{9}(F-32)\)
Cross Products of a Proportion
If \(\frac{a}{b}=\frac{c}{d}\), where \(b \neq 0\) and \(d \neq 0\), then \(a d=b c\).
```


## Topic 2 An Introduction to Functions

## Function Notation

Functions are represented as equations involving $x$ and $y$, such as $y=2 x+3$. The same equation can be written in function notation $f(x)=2 x+3$.
Notice $f(x)$ replaces $y$ and is read " $f$ of $x$ ". The letter $f$ is the name of the function, not a variable.

## Topic 3 Linear Functions

Slope
slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }}$

## Direct Variation

A direct variation is a relationship that can be represented by a function of the form $y=k x$, where $k \neq 0$.

## Slope-Intercept Form of a Linear Equation

The slope-intercept form of a linear equation is $y=m x+b$, where $m$ is the slope and $b$ is the $y$-intercept.

## Point-Slope Form of a Linear Equation

The point-slope form of the equation of a nonvertical line that passes through the point $\left(x_{1}, y_{1}\right)$ with slope $m$ is $y-y_{1}=m\left(x-x_{1}\right)$.

## Standard Form of a Linear Equation

The standard form of a linear equation is $A x+B y=C$, where $A, B$, and $C$ are real numbers and $A$ and $B$ are not both zero.

## Slopes of Parallel Lines

Nonvertical lines are parallel if they have the same slope and different $y$-intercepts. Any two vertical lines are parallel.

## Slopes of Perpendicular Lines

Two lines are perpendicular if the product of their slopes is -1 . A vertical line and horizontal line are perpendicular.

## Function Family: Linear

Parent $\quad y=f(x)$
Translate

| horizontal by $\|c\|$ | $y=f(x-c)$ |
| :--- | :--- |
| vertical by $\|d\|$ | $y=f(x)+d$ |

Reflection
across the $x$-axis $\quad y=-f(x)$
across the $y$-axis $\quad y=f(-x)$
Slope Change
$a>1$, graph steeper
$0<a<1$, graph less steep
$y=a f(x)$
$b>1$, graph steeper
$0<b<1$, graph less steep

$$
y=f(b x)
$$

Topic 4 Systems of Equations and Inequalities

## Solutions of Systems of Linear Equations

A system of linear equations can have one solution, no solution, or infinitely many solutions:

- If the lines have different slopes, the lines intersect, so there is one solution.
- If the lines have the same slopes and different $y$-intercepts, the lines are parallel, so there are no solutions.
- If the lines have the same slopes and the same $y$-intercepts, the lines are the same, so there are infinitely many solutions.


## Topic 5 Exponents and Radicals

## Zero as an Exponent

For every nonzero number $a, a^{0}=1$.

## Negative Exponent

For every nonzero number a and rational number $n$, $a^{-n}=\frac{1}{a^{n}}$.

## Multiplying Powers With the Same Base

For every nonzero number $a$ and rational numbers $m$ and $n$, $a^{m} \cdot a^{n}=a^{m+n}$.

## Dividing Powers With the Same Base

For every nonzero number $a$ and rational numbers $m$ and $n$, $\frac{a^{m}}{a^{n}}=a^{m-n}$.

## Raising a Power to a Power

For every nonzero number a and rational numbers $m$ and $n$, $\left(a^{m}\right)^{n}=a^{m n}$.

## Raising a Product to a Power

For every nonzero number $a$ and $b$ and rational number $n$, $(a b)^{n}=a^{n} b^{n}$.

## Raising a Quotient to a Power

For every nonzero number $a$ and $b$ and rational number $n$, $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$.

## Properties of Rational Exponents

If the $n$th root of $a$ is a real number and $m$ is an integer, then $\frac{1}{a^{n}}=\sqrt[n]{a}$ and $\frac{m}{a^{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$. If $m$ is negative, $a \neq 0$.

## Multiplication Property of Square Roots

For every number $a \geq 0$ and $b \geq 0, \sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$.

## Division Property of Square Roots

For every number $a \geq 0$ and $b>0, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.

## The Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse: $a^{2}+b^{2}=c^{2}$.
The Converse of the Pythagorean Theorem
If a triangle has sides of lengths $a, b$, and $c$, and $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle with hypotenuse of length $c$.

## Topic 6 Sequences

## Arithmetic Sequence

The explicit formula for an arithmetic sequence is $A(n)=A(1)+(n-1) d$, where $A(n)$ is the $n$th term, $A(1)$ is the first term, $n$ is the term number, and $d$ is the common difference.

The recursive definition for an arithmetic sequence with common difference $d$ has two parts:

| $A(1)=$ first term | Initial condition, or |
| :--- | :--- |
| $A(n)=A(n-1)+d$, for $n \geq 2$ | starting value |
| Recursive formula |  |

## Geometric Sequence

The explicit formula for a geometric sequence is $A(n)=A(1) \cdot r^{n-1}$, where $A(n)$ is the $n$th term, $A(1)$ is the first term, $n$ is the term number, and $r$ is the common ratio.
The recursive definition for a geometric sequence with common ratio $r$ has two parts:

$$
\begin{array}{ll}
A(1)=a & \text { Initial condition, or } \\
A(n)=A(n-1) \cdot r \text {, for } n \geq 2 & \text { starting value } \\
\text { Recursive formula }
\end{array}
$$

## Topic 7 Polynomials and Factoring

## Factoring Special Cases

For every nonzero number $a$ and $b$ :
$a^{2}-b^{2}=(a+b)(a-b)$
$a^{2}+2 a b+b^{2}=(a+b)(a+b)=(a+b)^{2}$
$a^{2}-2 a b+b^{2}=(a-b)(a-b)=(a-b)^{2}$

## Topic 8 Quadratic Functions and Equations

## Graph of a Quadratic Function

The graph of $y=a x^{2}+b x+c$, where $a \neq 0$, has the line $x=\frac{-b}{2 a}$ as its axis of symmetry. The $x$-coordinate of the vertex is $\frac{-b}{2 a}$.

## Function Family: Quadratic

Parent $\quad y=x^{2}$

Translation
horizontal $\quad y=(x-c)^{2}$ $c>0, c$ units right $c<0,|c|$ units left
vertical

$$
y=x^{2}+d
$$

$d>0, d$ units up
$d<0,|d|$ units down
Stretch, Compression, and Reflection
horizontal

$$
y=(b x)^{2}
$$

compression $(|b|>1)$
stretch ( $0<|b|<1$ )
reflection across the $y$-axis $(b<0)$
vertical

$$
y=a(x)^{2}
$$

stretch ( $|a|>1$ )
compression ( $0<|a|<1$ )
reflection across the $x$-axis $(a<0)$

## Vertex Form of a Quadratic Function

The quadratic function $f(x)=a(x-h)^{2}+k$ is written in vertex form.
Axis of symmetry: $x=h$
Vertex: (h, k)
Maximum or minimum value: $k$

## Zero-Product Propert

For every real number $a$ and $b$, if $a b=0$, then $a=0$ or $b=0$.

## Completing the Square

By adding $\left(\frac{b}{2}\right)^{2}$ to the expression $x^{2}+b x$, it forms a
perfect-square trinomial. $x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

## Quadratic Formula

If $a x^{2}+b x+c=0$, where $a \neq 0$, then
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

## Property of the Discriminant

For the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$, the value of the discriminant $b^{2}-4 a c$ tells you the number of solutions.

- If $b^{2}-4 a c>0$, there are two real solutions.
- If $b^{2}-4 a c=0$, there is one real solution.
- If $b^{2}-4 a c<0$, there are no real solutions.

Topic 9 Exponential Functions and Equations

## Exponential Function

An exponential function is a function of the form $y=a \cdot b^{x}$, where $a \neq 0, b>0, b \neq 1$, and $x$ is a real number. The horizontal asymptote for an exponential function of the form $y=a \cdot b^{x}$ is the $x$-axis $(y=0)$.

## Compound Interest Formula

$A=P\left(1+\frac{r}{n}\right)^{n t}$

## Exponential Growth and Decay

An exponential function has the form $y=a \cdot b^{x}$, where $a$ is a nonzero constant, $b$ is greater than 0 and not equal to 1 , and $x$ is a real number.

- The function $y=a \cdot b^{x}$, where $b$ is the growth factor, models exponential growth for $a>0$ and $b>1$.
- The function $y=a \cdot b^{x}$, where $b$ is the decay factor, models exponential decay for $a>0$ and $0<b<1$.


## Formulas of Geometry

> You will use a number of geometric formulas as you work through your algebra book. Here are some perimeter, area, and volume formulas.

$P=2 \ell+2 w$
$A=\ell W$
Rectangle


Triangle

$V=B h$
$V=\ell w h$
Right Prism


Right Cone

$P=4 s$
$A=s^{2}$
Square

$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Trapezoid

$V=B h$
$V=\pi r^{2} h$
Right Cylinder

$V=\frac{4}{3} \pi r^{3}$

Sphere

## Visual Glossary

## English

## Spanish

Arithmetic sequence (p. 246) A number sequence formed by adding a fixed number to each previous term to find the next term. The fixed number is called the common difference.

Progresión aritmética (p. 246) En una progresión aritmética la diferencia entre términos consecutivos es un número constante. El número constante se llama la diferencia común.

Example 4, 7, 10, 13, ... is an arithmetic sequence.

Asymptote (p. 384) A line that the graph of a function gets closer to as $x$ or $y$ gets larger in absolute value.

Asíntota (p. 384) Línea recta a la que la gráfica de una función se acerca indefinidamente, mientras el valor absoluto de $x$ oy aumenta.

Example


The $y$-axis is a vertical asymptote for $y=\frac{1}{x}$. The $x$-axis is a horizontal asymptote for $y=\frac{1}{x}$.

Axis of symmetry (p. 326) The line that divides a parabola into two matching halves.

Eje de simetría (p. 326) El eje de simetría es la línea que divide una parábola en dos mitades exactamente iguales.

Example


B
Binomial (p. 268) A polynomial of two terms.
Binomio (p. 268) Polinomio compuesto de dos términos.
Example $3 x+7$ is a binomial.


Causation (p. 144) When a change in one quantity causes a change in a second quantity. A correlation between quantities does not always imply causation.

Causalidad (p. 144) Cuando un cambio en una cantidad causa un cambio en una segunda cantidad. Una correlación entre las cantidades no implica siempre la causalidad.

Diferencia común (p. 246) La diferencia común es la diferencia entre los términos consecutivos de una progresión aritmética.
Example The common difference is 3 in the arithmetic
sequence $4,7,10,13, \ldots$

## English

## Spanish

Common ratio (p. 246) The fixed number used to find terms in a geometric sequence.

Razón común (p. 246) Número constante que se usa para hallar los términos en una progresión geométrica.

$$
\begin{aligned}
& \text { Example } \begin{array}{l}
\text { The common ratio is } \frac{1}{3} \text { in } \\
\text { the geometric sequence } \\
9,3,1, \frac{1}{3}, \ldots
\end{array}
\end{aligned}
$$

Completing the square (p. 367) A method of solving quadratic equations. Completing the square turns every quadratic equation into the form $x^{2}=c$.

Completar el cuadrado (p. 367) Método para solucionar ecuaciones cuadráticas. Cuando se completa el cuadrado, se transforma la ecuación cuadrática a la fórmula $x^{2}=c$.

$$
\begin{array}{ll}
\text { Example } & x^{2}+6 x-7=9 \text { is rewritten as } \\
& (x+3)^{2}=25 \text { by completing } \\
\text { the square. }
\end{array}
$$

Compound inequalities (p. 40) Two inequalities that are joined by and or or.

Desigualdades compuestas (p. 40) Dos desigualdades que están enlazadas por medio de una y o una o.

$$
\begin{aligned}
\text { Examples } 5<x \text { and } x<10 \\
14<x \text { or } x \leq-3
\end{aligned}
$$

Compound interest (p. 395) Interest paid on both the principal and the interest that has already been paid.

Interés compuesto (p. 395) Interés calculado tanto sobre el capital como sobre los intereses ya pagados.

Example For an initial deposit of $\$ 1000$ at a $6 \%$ interest rate with interest compounded quarterly, the function $y=1000\left(\frac{0.06}{4}\right)^{x}$ gives the account balance $y$ after $x$ years.

Compression (p. 340) A compression is a transformation that decreases the distance between corresponding points of a graph.

Compresión (p. 340) Una compresión es una transformación que disminuye la distancia entre puntos que se corresponden en una gráfica.

Consistent system (p. 160) A system of equations that has at least one solution is consistent.

Sistema consistente (p. 160) Un sistema de ecuaciones que tiene por lo menos una solución es consistente.


Constant of variation for direct variation (p. 108) The nonzero constant $k$ in the function $y=k x$.

Example For the direct variation $y=24 x, 24$ is the constant of variation.

## English

## Spanish

Continuous graph (p. 70) A graph that is unbroken.
Gráfica continua (p. 70) Una gráfica continua es una gráfica ininterrumpida.


Correlation coefficient (p. 144) A number from -1 to 1 that tells you how closely the equation of the line of best fit models the data.

Coeficiente de correlación (p. 144) Número de -1 a 1 que indica con cuánta exactitud la línea de mejor encaje representa los datos.


The correlation coefficient is approximately 0.94 .

Cross products (of a proportion) (p. 22) In a proportion $\frac{a}{b}=\frac{c}{d}$ the products $a d$ and $b c$. These products are equal.

Productos cruzados (de una proporción) (p. 22) En una proporción $\frac{a}{b}=\frac{c}{d}$, los productos $a d$ y $b c$. Estos productos son iguales.

Example The cross products for $\frac{3}{4}=\frac{6}{8}$ are $3 \cdot 8$ and $4 \cdot 6$.

Decay factor (p. 395) 1 minus the percent rate of change, expressed as a decimal, for an exponential decay situation.

Factor de decremento (p. 395) 1 menos la tasa porcentual de cambio, expresada como decimal, en una situación de reducción exponencial.

Example The decay factor of the function
$y=5(0.3)^{x}$ is 0.3 .

Degree of a monomial (p.268) The sum of the exponents of the variables of a monomial.

Grado de un monomio (p. 268) La suma de los exponentes de las variables de un monomio.

Example $-4 x^{3} y^{2}$ is a monomial of degree 5 .

## English

## Spanish

Degree of a polynomial (p. 268) The highest degree of any term of the polynomial.

Grado de un polinomio (p. 268) El grado de un polinomio es el grado mayor de cualquier término del polinomio

Example The polynomial $P(x)=x^{6}+2 x^{3}-3$ has degree 6 .

Dependent system (p.160) A system of equations that does Sistema dependiente (p.160) Sistema de ecuaciones que no not have a unique solution.

Example The system $\left\{\begin{array}{l}y=2 x+3 \\ -4 x+2 y=6\end{array}\right.$ represents two equations for the same line, so it has many solutions. It is a dependent system.

Dependent variable (p. 59) A variable that provides the output values of a function.

Variable dependiente (p. 59) Variable de la que dependen los valores de salida de una función.

Example In the equation $y=3 x, y$ is the dependent variable.

Difference of two squares (p. 296) A difference of two squares is an expression of the form $a^{2}-b^{2}$. It can be factored as $(a+b)(a-b)$.

Diferencia de dos cuadrados (p. 296) La diferencia de dos cuadrados es una expresión de la forma $a^{2}-b^{2}$. Se puede factorizar como $(a+b)(a-b)$.

Examples $25 a^{2}-4=(5 a+2)(5 a-2)$
$m^{6}-1=\left(m^{3}+1\right)\left(m^{3}-1\right)$

Direct variation (p. 108) A linear function defined by an equation of the form $y=k x$, where $k \neq 0$.

Variación directa (p. 108) Una función lineal definida por una ecuación de la forma $y=k x$, donde $k \neq 0$, representa una variación directa.

Example $y=18 x$ is a direct variation.

Discrete graph (p. 70) A graph composed of isolated points.
Gráfica discreta (p. 70) Una gráfica discreta es compuesta de puntos aislados.

Example


Discriminant (p. 372) The discriminant of a quadratic equation of the form $a x^{2}+b x+c=0$ is $b^{2}-4 a c$. The value of the discriminant determines the number of solutions of the equation.

Discriminante (p. 372) El discriminante de una ecuación cuadrática $a x^{2}+b x+c=0$ es $b^{2}-4 a c$. El valor del discriminante determina el número de soluciones de la ecuación.

Example The discriminant of $2 x^{2}+9 x-2=0$ is 97 .

## English

## Spanish

Domain (of a relation or function) (p.83) The possible values for the input of a relation or function.

Dominio (de una relación o función) (p. 83) Posibles valores de entrada de una relación o función.

> Example In the function $f(x)=x+22$, the domain is all real numbers.

## $E$

Elimination method (p. 175) A method for solving a system of linear equations. You add or subtract the equations to eliminate a variable.

$$
\text { Example } \begin{aligned}
3 x+y=19 \\
2 x-y=1
\end{aligned} \quad \text { Add the equations to get } x=4 .
$$

Eliminación (p. 175) Método para resolver un sistema de ecuaciones lineales. Se suman o se restan las ecuaciones para eliminar una variable

Excluded value (p. 305) A value of $x$ for which a rational expression $f(x)$ is undefined.

Valor excluido (p. 305) Valor de $x$ para el cual una expresión racional es indefinida.

Explicit formula (p. 246) An explicit formula expresses the $n$th term of a sequence in terms of $n$.

Fórmula explícita (p. 246) Una fórmula explícita expresa el $n$-ésimo término de una progresión en función de $n$.

$$
\begin{array}{ll}
\text { Example Let } a_{n}=2 n+5 \text { for positive } \\
& \text { integers } n \text {. If } n=7 \text {, then } \\
a_{7}=2(7)+5=19 .
\end{array}
$$

Exponential decay (p. 395) A situation modeled with a function of the form $y=a b^{x}$, where $a>0$ and $0<b<1$.

$$
\text { Example } y=5(0.1)^{x}
$$

Exponential function (p. 386) A function that repeatedly multiplies an initial amount by the same positive number. You can model all exponential functions using $y=a b^{x}$, where $a$ is a nonzero constant, $b>0$, and $b \neq 1$.

Decremento exponencial (p. 395) Para $a>0$ y $0<b<1$, la función $y=a b^{x}$ representa el decremento exponencial.

Example


Exponential growth (p. 395) A situation modeled with a
function of the form $y=a b^{x}$, where $a>0$ and $b>1$.

Example $y=100(2)^{x}$

Función exponencial (p. 386) Función que multiplica repetidas veces una cantidad inicial por el mismo número positivo. Todas las funciones exponenciales se pueden representar mediante $y=a b^{x}$, donde $a$ es una constante con valor distinto de cero, $b>0$ y $b \neq 1$.

Incremento exponencial (p. 395) Para $a>0$ y $b>1$, la función $y=a b^{x}$ representa el incremento exponencial.

## English

## Spanish

Extrapolation (p. 144) The process of predicting a value outside the range of known values.

Extrapolación (p. 144) Proceso que se usa para predecir un valor por fuera del ámbito de los valores dados.

## F

Factor by grouping (p. 301) A method of factoring that uses the Distributive Property to remove a common binomial factor of two pairs of terms.

Factor común por agrupación de términos (p. 301) Método de factorización que aplica la propiedad distributiva para sacar un factor común de dos pares de términos en un binomio.

Example The expression
$7 x(x-1)+4(x-1)$ can be
factored as $(7 x+4)(x-1)$.

Falling object model (p. 326) The function $h=-16 t^{2}+c$ models the height of a falling object, where $h$ is the object's height in feet, $t$ is the time in seconds since the object began to fall, and $c$ is the object's initial height.

Modelo de objetos que caen (p. 326) La función $h=-16 t^{2}+c$ representa la altura de un objeto que cae, donde $h$ es la altura del objeto en pies, $t$ es el tiempo de caída en segundos y c es la altura inicial del objeto.

Formula (p. 17) An equation that states a relationship among quantities.

Fórmula (p.17) Ecuación que establece una relación entre cantidades.

Example The formula for the volume $V$ of a cylinder is $V=\pi r^{2} h$, where $r$ is the radius of the cylinder and $h$ is its height.

Function (p. 59) A relation that assigns exactly one value in the range to each value of the domain.

Función (p. 59) La relación que asigna exactamente un valor del rango a cada valor del dominio.

Example Earned income is a function of the
number of hours worked. If you earn $\$ 4.50 / h$, then your income is expressed by the function $f(h)=4.5 h$.

Function notation (p.88) To write a rule in function notation, you use the symbol $f(x)$ in place of $y$.

Notación de una función (p. 88) Para expresar una regla en notación de función se usa el símbolo $f(x)$ en lugar de $y$.

Example $f(x)=3 x-8$ is in function
notation.

Geometric sequence (p. 246) A number sequence formed by multiplying a term in a sequence by a fixed number to find the next term.

Progresión geométrica (p.246) Tipo de sucesión numérica formada al multiplicar un término de la secuencia por un número constante, para hallar el siguiente término.

Example $9,3,1, \frac{1}{3}, \ldots$ is an example of a geometric sequence.

## English

Growth factor (p. 395) 1 plus the percent rate of change for an exponential growth situation.

## Spanish

Factor incremental (p. 395) 1 más la tasa porcentual de cambio en una situación de incremento exponencial.

Example The growth factor of $y=7(1.3)^{x}$
is 1.3 .

Hypotenuse (p. 233) The side opposite the right angle in a right triangle. It is the longest side in the triangle.

Hipotenusa (p. 233) En un triángulo rectángulo, el lado opuesto al ángulo recto. Es el lado más largo del triángulo.


Identity (p. 11) An equation that is true for every value.
Identidad (p.11) Una ecuación que es verdadera para todos los valores.

Example $5-14 x=5\left(1-\frac{14}{5} x\right)$ is an
identity because it is true for any value of $x$.

Inconsistent system (p. 160) A system of equations that has no solution

Sistema incompatible (p. 160) Un sistema incompatible es un sistema de ecuaciones para el cual no hay solución.

$$
\begin{aligned}
& \text { Example }\left\{\begin{array}{l}
y=2 x+3 \\
-2 x+y=1
\end{array}\right. \text { is a system of parallel lines, } \\
& \text { so it has no solution. It is an inconsistent } \\
& \text { system. }
\end{aligned}
$$

Independent system (p. 160) A system of linear equations that has a unique solution.

Sistema independiente (p. 160) Un sistema de ecuaciones lineales que tenga una sola solución es un sistema independiente.

$$
\text { Example }\left\{\begin{array}{l}
x+2 y=-7 \\
2 x-3 y=0
\end{array}\right. \text { has the unique solution }
$$

$$
(-3,-2) \text {. It is an independent system. }
$$

Independent variable (p. 59) A variable that provides the input values of a function.

Variable independiente (p. 59) Variable de la que dependen los valores de entrada de una función.

Example In the equation $y=3 x, x$ is the independent variable.

## English

Index (p. 225) With a radical sign, the index indicates the degree of the root.

| Example index 2 | index 3 |
| :---: | :---: |
| $\sqrt{16}$ | $\sqrt[3]{16}$ |

Input (p. 59) A value of the independent variable.

## Spanish

Índice (p. 225) Con un signo de radical, el índice indica el grado de la raíz.
$\sqrt{\text { index }} 4$

Example The input is any value of $x$ you substitute into a function.

Interpolation (p. 144) The process of estimating a value between two known quantities.

Interpolación (p. 144) Proceso que se usa para estimar el valor entre dos cantidades dadas.

Leg (p. 233) Each of the sides that form the right angle of a right triangle.

Cateto (p. 233) Cada uno de los dos lados que forman el ángulo recto en un triángulo rectángulo.

Example $A$


Linear equation (p. 115) An equation whose graph forms a straight line.

Ecuación lineal (p. 115) Ecuación cuya gráfica es una línea recta.

Example


Linear factor (p. 360) A linear factor of an expression is a factor in the form $a x+b, a \neq 0$.

Linear function (p. 59) A function whose graph is a line is a linear function. You can represent a linear function with a linear equation.

Factor lineal (p. 360) Un factor lineal de una expresión es un factor que tiene la forma $a x+b, a \neq 0$.

Función lineal (p. 59) Una función cuya gráfica es una recta es una función lineal. La función lineal se representa con una ecuación lineal.

Example


## English

## Spanish

Linear inequality (p. 187) An inequality in two variables whose graph is a region of the coordinate plane that is bounded by a line. Each point in the region is a solution of the inequality.

Desigualdad lineal ( $\mathbf{p}$. 187) Una desigualdad lineal es una desigualdad de dos variables cuya gráfica es una región del plano de coordenadas delimitado por una recta. Cada punto de la región es una solución de la desigualdad.

Example


Linear parent function (p. 115) The simplest form of a linear function.

$$
\text { Example } y=x
$$

Line of best fit ( p . 144) The most accurate trend line on a scatter plot showing the relationship between two sets of data.

Función lineal elemental (p. 115) La forma más simple de una función lineal.

Recta de mayor aproximación (p. 144) La línea de tendencia en un diagrama de puntos que más se acerca a los puntos que representan la relación entre dos conjuntos de datos.

Example

## Calories and Fat for

Fast Food Meals


Literal equation (p. 17) An equation involving two or more variables.

Ecuación literal (p. 17) Ecuación que incluye dos o más variables.

Example $4 x+2 y=18$ is a literal equation.

## English

## Spanish

Maximum (p. 326) The $y$-coordinate of the vertex of a parabola that opens downward.

Máximo (p. 326) La coordenada y del vértice en una parábola que se abre hacia abajo.


Since the parabola opens downward, the $y$-coordinate of the vertex is the function's maximum value.

Minimum (p. 326) The $y$-coordinate of the vertex of a parabola that opens upward.

Mínimo (p. 326) La coordenada y del vértice en una parábola que se abre hacia arriba.

Example


Since the parabola opens upward, the $y$-coordinate of the vertex is the function's minimum value.

Monomial (p. 268) A real number, a variable, or a product of a real number and one or more variables with whole-number exponents.

Monomio (p. 268) Número real, variable o el producto de un número real y una o más variables con números enteros como exponentes.

Example 9, $n$, and $-5 x y^{2}$ are examples of monomials

Negative correlation (p. 144) The relationship between two sets of data, in which one set of data decreases as the other set of data increases.

Correlación negativa (p. 144) Relación entre dos conjuntos de datos en la que uno de los conjuntos disminuye a medida que el otro aumenta.


## English

## Spanish

No correlation ( $\mathbf{p}$. 144) There does not appear to be a relationship between two sets of data.

Sin correlación (p. 144) No hay relación entre dos conjuntos de datos.


Nonlinear function (p. 64) A function whose graph is not a line or part of a line.

Función no lineal (p. 64) Función cuya gráfica no es una línea o parte de una línea.

Example

nth root (p. 225) For any real numbers a and $b$, and any positive integer $n$, if $a^{n}=b$, then $a$ is an $n$th root of $b$.
raíz $\boldsymbol{n}$-ésima ( $\mathbf{p}$. 225) Para todos los números reales a y $b$, y todo número entero positivo $n$, si $a^{n}=b$, entonces a es la $n$-ésima raíz de $b$.

Example $\sqrt[5]{32}=2$ because $2^{5}=32$.

$$
\sqrt[4]{81}=3 \text { because } 3^{4}=81
$$

Opposite reciprocals (p. 132) A number of the form $-\frac{b}{a}$, where $\frac{a}{b}$ is a nonzero rational number. The product of a number and its opposite reciprocal is -1 .

Recíproco inverso (p. 132) Número en la forma $-\frac{b}{a}$, donde $\frac{a}{b}$ es un número racional diferente de cero. El producto de un número y su recíproco inverso es -1 .

Example $\frac{2}{5}$ and $-\frac{5}{2}$ are opposite reciprocals because

$$
\left(\frac{2}{5}\right)\left(-\frac{5}{2}\right)=-1 .
$$

Output (p. 59) A value of the dependent variable.
Salida (p. 59) Valor de una variable dependiente.
Example The output of the function $f(x)=x^{2}$ when

$$
x=3 \text { is } 9 \text {. }
$$

## English

## Spanish

Parabola (p. 326) The graph of a quadratic function. Parábola (p.326) La gráfica de una función cuadrática.
Example


Parallel lines (p. 132) Two lines in the same plane that never intersect. Parallel lines have the same slope.

Parent function (p. 115) A family of functions is a group of functions with common characteristics. A parent function is the simplest function with these characteristics.

Rectas paralelas (p.132) Dos rectas situadas en el mismo plano que nunca se cortan. Las rectas paralelas tienen la misma pendiente.

Example


Example $y=x$ is the parent function for the family of linear equations of the form $y=m x+b$.

Perfect square trinomial (p. 296) Any trinomial of the form $a^{2}+2 a b+b^{2}$ or $a^{2}-2 a b+b^{2}$.

Función elemental (p. 115) Una familia de funciones es un grupo de funciones con características en común. La función elemental es la función más simple que reúne esas características.

Trinomio cuadrado perfecto (p. 296) Todo trinomio de la forma $a^{2}+2 a b+b^{2}$ ó $a^{2}-2 a b+b^{2}$.

Example $(x+3)^{2}=x^{2}+6 x+9$

Perpendicular lines (p. 132) Lines that intersect to form right angles. Two lines are perpendicular if the product of their slopes is -1 .

Rectas perpendiculares (p. 132) Rectas que forman ángulos rectos en su intersección. Dos rectas son perpendiculares si el producto de sus pendientes es -1 .

Example


Point-slope form (p. 120) A linear equation of a nonvertical line written as $y-y_{1}=m\left(x-x_{1}\right)$. The line passes through the point $\left(x_{1}, y_{1}\right)$ with slope $m$.

Forma punto-pendiente (p. 120) La ecuación lineal de una recta no vertical que pasa por el punto ( $x_{1}, y_{1}$ ) con pendiente $m$ está dada por $y-y_{1}=m\left(x-x_{1}\right)$.

Example An equation with a slope of $-\frac{1}{2}$ passing
through $(2,-1)$ would be written
$y+1=-\frac{1}{2}(x-2)$ in
point-slope form.

## English

Polynomial (p. 268) A monomial or the sum or difference of two or more monomials. A quotient with a variable in the denominator is not a polynomial.

## Spanish

Polinomio (p. 268) Un monomio o la suma o diferencia de dos o más monomios. Un cociente con una variable en el denominador no es un polinomio.
Example $2 x^{2}, 3 x+7,28$, and $-7 x^{3}-2 x^{2}+9$ are all polynomials.

Positive correlation (p. 144) The relationship between two sets of data in which both sets of data increase together.

Correlación positiva (p. 144) La relación entre dos conjuntos de datos en la que ambos conjuntos incrementan a la vez.


Principal square root (p. 225) A number of the form $\sqrt{b}$. The expression $\sqrt{b}$ is called the principal (or positive) square root of $b$.

Raíz cuadrada principal (p. 225) La expresión $\sqrt{b}$ se llama raíz cuadrada principal (o positiva) de $b$.

Example 5 is the principal square
root of $\sqrt{25}$.

Proportion (p. 22) An equation that states that two ratios are equal.

Proporción (p. 22) Es una ecuación que establece que dos razones son iguales.

$$
\text { Example } \frac{7.5}{9}=\frac{5}{6}
$$

Pythagorean Theorem (p. 233) In any right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse: $a^{2}+b^{2}=c^{2}$.

Teorema de Pitágoras (p. 233) En un triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa: $a^{2}+b^{2}=c^{2}$.

Example


Quadratic equation (p. 350) A quadratic equation is one that can be written in the standard form $a x^{2}+b x+c=0$, where $a \neq 0$.

Ecuación cuadrática (p. 350) Ecuación que puede expresarse de la forma normal como $a x^{2}+b x+c=0$, en la que $a \neq 0$.

## English

Quadratic formula (p. 372) If $a x^{2}+b x+c=0$ and
$a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

## Spanish

Fórmula cuadrática (p. 372) Si $a x^{2}+b x+c=0$ y $a \neq 0$, entonces $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

$$
\begin{aligned}
\text { Example } & 2 x^{2}+10 x+12=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{-10 \pm \sqrt{10^{2}-4(2)(12)}}{2(2)} \\
x & =\frac{-10 \pm \sqrt{4}}{4} \\
x & =\frac{-10+2}{4} \text { or } \frac{-10-2}{4} \\
x & =-2 \text { or }-3
\end{aligned}
$$

Quadratic function (p. 326) A function of the form $y=a x^{2}+b x+c$, where $a \neq 0$. The graph of a quadratic function is a parabola, a U-shaped curve that opens up or down.

Función cuadrática (p. 326) La función $y=a x^{2}+b x+c$, en la que $a \neq 0$. La gráfica de una función cuadrática es una parábola, o curva en forma de U que se abre hacia arriba o hacia abajo.

$$
\text { Example } y=5 x^{2}-2 x+1 \text { is a quadratic function. }
$$

Quadratic parent function (p. 326) The simplest quadratic function $f(x)=x^{2}$ or $y=x^{2}$.

Función cuadrática madre (p.326) La función cuadrática más simple $f(x)=x^{2}$ ó $y=x^{2}$.

Example $y=x^{2}$ is the parent function for the family of quadratic equations of the form $y=a x^{2}+b x+c$.

Radical (p. 225) An expression made up of a radical symbol and a radicand.

Radical (p. 225) Expresión compuesta por un símbolo radical y un radicando.

Example $\sqrt{a}$
Radical expression (p.225) Expression that contains Expresión radical (p.225) Expresiones que contienen radicales. a radical.

Example $\sqrt{3}, \sqrt{5 x}$, and $\sqrt{x-10}$ are examples of radical expressions.

Radicand (p. 225) The expression under the radical sign is the radicand.

Radicando (p. 225) La expresión que aparece debajo del signo radical es el radicando.

Example The radicand of the radical expression

$$
\sqrt{x+2} \text { is } x+2
$$

## English

Range (of a relation or function) (p. 83) The possible values of the output, or dependent variable, of a relation or function.

## Spanish

Rango (de una relación o función) (p. 83) El conjunto de todos los valores posibles de la salida, o variable dependiente, de una relación o función.

Example In the function $y=|x|$, the range is the set of all nonnegative numbers.

Rate (p. 22) A ratio of $a$ to $b$ where $a$ and $b$ represent quantities measured in different units.

Tasa (p. 22) La relación que existe entre $a$ y $b$ cuando $a$ y $b$ son cantidades medidas con distintas unidades.

Example Traveling 125 miles in 2 hours results in the rate $\frac{125 \text { miles }}{2 \text { hours }}$ or $62.5 \mathrm{mi} / \mathrm{h}$.

Rate of change ( $\mathbf{p} .100$ ) The relationship between two quantities that are changing. The rate of change is also called slope
rate of change $=\frac{\text { change in the dependent variable }}{\text { change in the independent variable }}$

Tasa de cambio (p. 100) La relación entre dos cantidades que cambian. La tasa de cambio se llama también pendiente.
tasa de cambio $=\frac{\text { cambio en la variable dependiente }}{\text { cambio en la variable independiente }}$

Example Video rental for 1 day is $\$ 1.99$. Video rental
for 2 days is $\$ 2.99$.
rate of change $=\frac{2.99-1.99}{2-1}$
$=\frac{1.00}{1}$
$=1$

Ratio (p. 22) A ratio is the comparison of two quantities by division.

Razón (p. 22) Una razón es la comparación de dos cantidades por medio de una división

Example $\frac{5}{7}$ and 7:3 are ratios.

Rational expression (p. 305) A ratio of two polynomials. The value of the variable cannot make the denominator equal to 0 .

Expresión racional (p. 305) Una razón de dos polinomios. El valor de la variable no puede hacer el denominador igual a 0 .

Example $\frac{3}{x^{3}+x^{\prime}}$, where $x \neq 0$

Rationalize the denominator (p. 229) To rationalize the denominator of an expression, rewrite it so there are no radicals in any denominator and no denominators in any radical

Racionalizar el denominador (p. 229) Para racionalizar el denominador de una expresión, ésta se escribe de modo que no haya radicales en ningún denominador y no haya denominadores en ningún radical.

$$
\text { Example } \frac{2}{\sqrt{5}}=\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{2 \sqrt{5}}{\sqrt{25}}=\frac{2 \sqrt{5}}{5}
$$

Recursive formula (p. 251) A recursive formula defines the terms in a sequence by relating each term to the ones before it.

Fórmula recursiva (p. 251) Una fórmula recursiva define los términos de una secuencia al relacionar cada término con los términos que lo anteceden.

$$
\begin{aligned}
& \text { Example Let } A(n)=2.5 A(n-1)+3 A(n-2) . \\
& \text { If } A(5)=3 \text { and } A(4)=7.5 \text {, then } \\
& A(6)=2.5(3)+3(7.5)=30 \text {. }
\end{aligned}
$$

## English

Reflection (p. 137) A reflection flips the graph of a function across a line, such as the $x$ - or $y$-axis. Each point on the graph of the reflected function is the same distance from the line of reflection as is the corresponding point on the graph of the original function.

## Spanish

Reflexión (p. 137) Una reflexión voltea la gráfica de una función sobre una línea, como el eje de las $x$ o el eje de las $y$. Cada punto de la gráfica de la función reflejada está a la misma distancia del eje de reflexión que el punto correspondiente en la gráfica de la función original.

Example


Relation (p. 83) Any set of ordered pairs.
Relación (p. 83) Cualquier conjunto de pares ordenados.

$$
\text { Example }\{(0,0),(2,3),(2,-7)\} \text { is a relation. }
$$

Root of an equation (p. 350) A solution of an equation.

## S

Scale (p. 27) The ratio of any length in a scale drawing to the corresponding actual length. The lengths may be in different units.

Ráiz de una ecuación (p.350) Solucion de una ecuación.

$$
\begin{aligned}
& \text { Example For a drawing in which a } \\
& \text { 2-in. length represents an actual } \\
& \text { length of } 18 \mathrm{ft} \text {, the scale is } \\
& 1 \mathrm{in} .: 9 \mathrm{ft} \text {. }
\end{aligned}
$$

Escala (p. 27) Razón de cualquier longitud de un dibujo a escala a la longitud real correspondiente. Las longitudes pueden tener diferentes unidades.

Scale drawing (p. 27) An enlarged or reduced drawing similar to an actual object or place.

Example
Dibujo a escala (p. 27) Dibujo que muestra de mayor o menor tamaño un objeto o lugar dado.


## English

Scale model (p. 27) A three-dimensional model that is similar to a three-dimensional object.

## Spanish

Modelo de escala (p. 27) Modelo tridimensional que es similar a un objeto tridimensional

Example A ship in a bottle is a scale model of a real ship.

Scatter plot (p. 144) A graph that relates two different sets of data by displaying them as ordered pairs.

Diagrama de puntos (p. 144) Gráfica que muestra la relación entre dos conjuntos. Los datos de ambos conjuntos se presentan como pares ordenados.

Example


The scatter plot displays the amount spent on advertising (in thousands of dollars) versus product sales (in millions of dollars).

Sequence (p. 246) An ordered list of numbers that often forms a pattern.

Progresión (p. 246) Lista ordenada de números que muchas veces forma un patrón.

Example -4, 5, 14, 23 is a sequence.

Similar figures (p. 27) Similar figures are two figures that have the same shape, but not necessarily the same size.

Figuras semejantes (p. 27) Dos figuras semejantes son dos figuras que tienen la misma forma pero no son necesariamente del mismo tamaño.


$\triangle D E F$ and $\triangle G H I$ are similar.

## English

Slope (p. 100) The ratio of the vertical change to the horizontal change.
slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $x_{2}-x_{1} \neq 0$

## Spanish

Pendiente (p. 100) La razón del cambio vertical al cambio horizontal.
pendiente $=\frac{\text { cambio vertical }}{\text { cambio horizontal }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, donde $x_{2}-x_{1} \neq 0$

Example


The slope of the line above is $\frac{2}{4}=\frac{1}{2}$.

Slope-intercept form (p. 115) The slope-intercept form of a linear equation is $y=m x+b$, where $m$ is the slope of the line and $b$ is the $y$-intercept.

Forma pendiente-intercepto (p. 115) La forma pendienteintercepto es la ecuación lineal $y=m x+b$, en la que $m$ es la pendiente de la recta y $b$ es el punto de intersección de esa recta con el eje $y$.

Example $y=8 x-2$

Solution of an inequality (two variables) (p. 187)
Solución de una desigualdad (dos variables) (p. 187)
Any ordered pair that makes the inequality true.
Cualquier par ordenado que haga verdadera la desigualdad.
Example Each ordered pair in the yellow area and on the solid red line is a solution of $3 x-5 y \leq 10$.


Solution of a system of linear equations (p. 160)
Any ordered pair in a system that makes all the equations of that system true.

## Solución de un sistema de ecuaciones lineales (p. 160)

Todo par ordenado de un sistema que hace verdaderas todas las ecuaciones de ese sistema.

Example $(2,1)$ is a solution of the system
$y=2 x-3$
$y=x-1$
because the ordered pair makes both equations true.

## English

Solution of a system of linear inequalities (p. 194)
Any ordered pair that makes all of the inequalities in the system true.

## Spanish

## Solución de un sistema de desigualdades lineales (p. 194)

Todo par ordenado que hace verdaderas todas las desigualdades del sistema.

Example


The shaded green area shows the
solution of the system $\begin{gathered}y>2 x-5 \\ 3 x+4 y<12\end{gathered}$

Standard form of a linear equation ( $p$. 125) The standard form of a linear equation is $A x+B y=C$, where $A, B$, and $C$ are real numbers and $A$ and $B$ are not both zero.

$$
\text { Example } 6 x-y=12
$$

Standard form of a polynomial (p. 268) The form of a polynomial that places the terms in descending order by degree.

Forma normal de una ecuación lineal (p. 125) La forma normal de una ecuación lineal es $A x+B y=C$, donde $A, B$ y $C$ son números reales, y donde $A$ y $B$ no son iguales a cero.

Standard form of a quadratic equation (p. 350) The standard form of a quadratic equation is $a x^{2}+b x+c=0$, where $a \neq 0$.

Forma normal de una ecuación cuadrática (p. 350) Cuando una ecuación cuadrática se expresa de forma $a x^{2}+b x+c=0$.

$$
\text { Example }-x^{2}+2 x-9=0
$$

Standard form of a quadratic function (p. 326) The standard form of a quadratic function is $f(x)=a x^{2}+b x+c$, where $a \neq 0$.

Forma normal de una función cuadrática (p. 326) La
forma normal de una función cuadrática es $f(x)=a x^{2}+b x+c$, donde $a \neq 0$.

$$
\text { Example } f(x)=2 x^{2}-5 x+2
$$

Stretch (p. 340) A stretch is a transformation that increases the distance between corresponding points of a graph.

Estiramiento (p. 340) Un estiramiento es una transformación que aumenta la distancia entre puntos que se corresponden en una gráfica.

## English

Substitution method (p. 169) A method of solving a system of equations by replacing one variable with an equivalent expression containing the other variable.

$$
\begin{aligned}
& \text { Example If } y=2 x+5 \text { and } \\
& x+3 y=7, \text { then } \\
& x+3(2 x+5)=7 .
\end{aligned}
$$

System of linear equations ( $\mathbf{p}$. 160) Two or more linear equations using the same variables.

$$
\text { Example } \begin{aligned}
y & =5 x+7 \\
y & =\frac{1}{2} x-3
\end{aligned}
$$

## Spanish

Método de sustitución (p. 169) Método para resolver un sistema de ecuaciones en el que se reemplaza una variable por una expresión equivalente que contenga la otra variable.

System of linear inequalities (p. 194) Two or more linear inequalities using the same variables.

$$
\begin{aligned}
\text { Example } & y \leq x+11 \\
& y<5 x
\end{aligned}
$$

Sistema de desigualdades lineales (p. 194) Dos o más desigualdades lineales que usen las mismas variables.

## T

Term of a sequence (p. 246) A term of a sequence is any number in a sequence.

Término de una progresión (p. 246) Un término de una secuencia es cualquier número de una secuencia.

Example - 4 is the first term of the sequence

$$
-4,5,14,23
$$

Transformation (p. 137) A transformation of a function $y=a f(x-h)+k$ is a change made to at least one of the values $a, h$, and $k$. The four types of transformations are dilations, reflections, rotations, and translations.

Transformación (p. 137) Una transformación de una función $y=a f(x-h)+k$ es un cambio que se le hace a por lo menos uno de los valores $a, h$ y $k$. Hay cuatro tipos de transformaciones: dilataciones, reflexiones, rotaciones y traslaciones.

$$
\begin{aligned}
\text { Example } g(x) & =2(x-3) \text { is a transformation of } \\
f(x) & =x
\end{aligned}
$$

Translation (p. 137) A transformation that shifts a graph horizontally, vertically, or both.

Translación (p. 137) Proceso de mover una gráfica horizontalmente, verticalmente o en ambos sentidos.


$$
\begin{aligned}
& y=|x+2| \text { is a translation } \\
& \text { of } y=|x| \text {. }
\end{aligned}
$$

## English

## Spanish

Trend line (p. 144) A line on a scatter plot drawn near the points. It shows a correlation.

Línea de tendencia (p. 144) Línea de un diagrama de puntos que se traza cerca de los puntos para mostrar una correlación.


Trinomial (p. 268) A polynomial of three terms.
Trinomio (p. 268) Polinomio compuesto de tres términos.

$$
\text { Example } 3 x^{2}+2 x-5
$$



Vertex (p. 326) The highest or lowest point on a parabola. The axis of symmetry intersects the parabola at the vertex.

Vértice (p. 326) El punto más alto o más bajo de una parábola. El punto de intersección del eje de simetría y la parábola.


Vertex form of a quadratic function (p. 346) The vertex form of a quadratic function is $f(x)=a(x-h)^{2}+k$, where $a \neq 0$ and $(h, k)$ is the coordinate of the vertex of the function.

Forma del vértice de una función cuadrática (p. 346)
La forma vértice de una función cuadrática es $f(x)=a(x-h)^{2}+k$, donde $a \neq 0 y(h, k)$ es la coordenada del vértice de la función.

$$
\begin{gathered}
\text { Example } f(x)=x^{2}+2 x-1=(x+1)^{2}-2 \\
\text { The vertex is }(-1,-2) .
\end{gathered}
$$

Vertical-line test (p. 83) The vertical-line test is a method used to determine if a relation is a function or not. If a vertical line passes through a graph more than once, the graph is not the graph of a function.

Prueba de la recta vertical (p. 83) La prueba de recta vertical es un método que se usa para determinar si una relación es una función o no. Si una recta vertical pasa por el medio de una gráfica más de una vez, la gráfica no es una gráfica de una función.


A line would pass through $(3,0)$ and $(3,2)$, so the relation is not a function.

## English

Vertical motion model (p. 333) The function
$h=-16 t^{2}+v t+c$ models the height of a object, where $h$ is the object's height in feet, $t$ is the time in seconds since the object began to fall, $v$ is the object's initial velocity, and $c$ is the object's initial height.

## Spanish

Modelo de movimiento vertical (p. 333) La función $h=-16 t^{2}+v t+c$ representa la altura de un objeto donde $h$ es la altura del objeto en pies, $t$ es el tiempo de caída en segundos, $v$ es la velocidad inicial del objeto y c es la altura inicial del objeto.
$x$-intercept (p. 125) The $x$-coordinate of a point where a graph crosses the $x$-axis.

Intercepto en $x$ (p. 125) Coordenada $x$ por donde la gráfica cruza el eje de las $x$.

$$
\text { Example The } x \text {-intercept of } 3 x+4 y=12 \text { is } 4 \text {. }
$$


$y$-intercept (p. 115) The $y$-coordinate of a point where a graph crosses the $y$-axis.

Intercepto en $\boldsymbol{y}$ (p. 115) Coordenada y por donde la gráfica cruza el eje de las $y$.

$$
\text { Example The } y \text {-intercept of } y=5 x+2 \text { is } 2
$$

Z

Zero-Product Property (p. 356) For all real numbers $a$ and $b$, if $a b=0$, then $a=0$ or $b=0$.

Propiedad del producto cero (p. 356) Para todos los números reales $a$ y $b$, si $a b=0$, entonces $a=0$ ó $b=0$.

$$
\begin{aligned}
\text { Example } & x(x+3)=0 \\
x & =0 \text { or } x+3
\end{aligned}=0, ~ \begin{aligned}
x & =0 \text { or } \quad x
\end{aligned}
$$

Zero of a function (p. 350) An x-intercept of the graph of a function.

Cero de una función (p. 350) Intercepto $x$ de la gráfica de una función.
Example The zeros of $y=x^{2}-4$ are $\pm 2$.


## Index

## A

## Activity Lab

Dividing Polynomials Using Algebra Tiles, 310

Modeling Equations With Variables on Both Sides, 10
Modeling Multi-Step Inequalities, 33
Solving Systems Using Algebra Tiles, 167-168
addition
of monomials, 269
of polynomials, 269-270
solving systems of linear equations using, 176

Addition Property of Equality, 175

## algebra tiles

for area models, 277
modeling equations, 10
modeling factoring, 287-288
modeling multi-step inequalities, 33
modeling polynomial division, 310
modeling quadratic equations, 367
solving systems, 167-168
algebraic expressions
dividing, 220
multiplying powers in, 210
alpha key, of graphing calculator, 190
analysis
of errors. see Error Analysis exercises
of graphs, 54
and, compound inequalities containing, 40, 41
area
of rectangle, 17, 80, 202
of trapezoid, 202, 354
of triangle, 17, 74
argument, defined, 132
arithmetic sequences
defined, 246, 261
as functions, 248
identifying, 247
in recursive form, 251-253
writing an explicit formula for, 248

## assessment

Check Your Understanding, 45, 92, 152, 199, 238, 261, 317, 378, 408

Quick Review, 45-48, 92-95, 152-155,
199-201, 238-241, 261-262,
317-321, 378-381, 408-409
TEKS Cumulative Practice, 49-51, 156-157, 202-203, 242-243, 263-265, 322-323, 382-383, 410-411
Texas End-of-Course Practice, 9, 16, 21, 26, $32,39,44,58,63,69,75,82,87,91$, 107, 112, 119, 124, 136, 143, 151, 166, 174, 180, 186, 193, 198, 209, 214, 218, 224, 228, 232, 237, 250, 255, 260, 272, 276, 281, 286, 291, 295, 300, 304, 309, 316, 332, 339, 345, 349, 355, 359, 366, 371, 377, 394, 401, 407

Topic Review, 45-48, 92-95, 152-155, 199-201, 238-241, 261-262, 317-321, 378-381, 408-409
association, 148
asymptote
defined, 386
horizontal, 387
axes, 54
axis of symmetry, 326, 327, 378, 379

## B

base
of exponent, 210
multiplying powers with same, 210
best fit, line of. See line of best fit

## binomials

defined, 268
dividing polynomials by, 312
multiplying, 277-279
squaring, 282-283
break-even point, 182

## C

calculator. See also graphing calculator
equations in slope-intercept form, 113-114 exercises that use, 336, 390-391, 391, 393
line of best fit, 147
vertical motion model, 335
causal relationships, 148
causation, 148
defined, 144
change, rate of, 100
Check Your Understanding, 45, 92, 152, 199, 238, 261, 317, 378, 408
circle
area of, 17
circumference of, 17, 19
radius of, 232
circumference, 17, 19

## classifying

functions as linear or nonlinear, 65
lines, 133
coefficient
correlation. see correlation coefficient
elimination of variables using, 175-176
positive, 36
common difference, 246, 247, 248, 261
common ratio, 246, 248, 261
communication. See Reasoning exercises; writing
Commutative Property of Multiplication, 230
completing the square, 367,381
compound inequalities
containing and, 40, 41
containing or, 40, 41
defined, 40, 48
graphing, 40-44
solving, 40-44
writing, 41-42
compound interest, 395, 396, 398
compression
defined, 340
graphing quadratic functions with, 341, 379
Concept Summary
Choosing a Method for Solving Linear Systems, 181
Dividing a Polynomial by a Polynomial, 311

Function Notation, 88
Graphs of Direct Variations, 108
Linear Equations, 125
Slopes of Lines, 101
Systems of Linear Equations, 160
consistent systems of linear equations, 160
constant of variation
defined, 108
for a direct variation, 108, 153
constant ratio, 387

Constructed Response, 50-51
exercises, 157, 203, 243, 264-265, 323, 383, 411
continuous graphs, 70, 94

## Converse of the Pythagorean Theorem,

 233coordinates. See $x$-coordinates; $y$-coordinates
correlation, 144, 148
correlation coefficient, 145, 147
defined, 144
cross products
defined, 22, 47
of a proportion, 22
Cross Products Property of a Proportion, 22
cube
side length of, 203
volume of, 203
cubic polynomials, factoring, 301
cylinder
volume of, 80, 217, 276, 307

## D

decay, exponential, 396, 398-399, 409
decay factor, 396, 409
decimals, solving equations containing, 6-7 degree
of a monomial, 268
of a polynomial, 268, 317
denominators, rationalizing, 229, 231
dependent variables, 59, 60, 100
diagram
mapping, 83-84
as problem-solving strategy. see draw a diagram
difference of two squares, defined, 296
direct variation
constant of variation for, 108
defined, 108
graphs of, 108-109
identifying, 108, 153
tables and, 109-110
writing equations of, 109
discrete graphs, 70, 94
discriminant
defined, 372
using, 373, 375, 381
distance-rate-time problems, 100-101
Distributive Property
solving equations using, 6
solving inequalities using, 36
using to multiply binomials, 278
Dividing Powers With the Same Base, 219 divisibility
of algebraic expressions, 220
of numbers in scientific notation, 220
of polynomials, 311-313
division, of polynomials, 310

## Division Property

of Exponents, 219
of Square Roots, 229, 230
domain
defined, 83, 95
of a function, 89
identifying, 90
for real-world data, 404
draw a diagram, 80

## E

elimination, for solving linear systems, 181
elimination method
defined, 175
solving systems of linear equations using, 175-176, 181, 184
equations. See also function(s)
containing decimals, 6-7
containing fractions, 6
of direct variation, 108-110
finding slopes using, 132
of geometric relationships, 60
graphing, 121
from graphs, 116
with grouping symbols, 13
of horizontal translations, 139
identity, 13
linear. see linear equations
of linear functions, 61
literal, 17-18
modeling, 10
multi-step, 4-7
with no solution, 13
of patterns, 66
of perpendicular lines, 132, 134
in point-slope form, 120, 121, 125
quadratic. see quadratic equations
in slope-intercept form, 116, 125
solving using the Distributive Property, 6
in standard form, 125-129
systems of linear, 160
from tables, 122
of trend lines, 146
from two points, 116
with variables on both sides, 10, 11-13
of vertical translations, 139
Essential Understanding, 4, 11, 17,
$22,27,34,40,54,59,64,70,78$,
$83,88,100,108,115,120,125$,
132, 137, 144, 160, 169, 175,
181, 187, 194, 206, 210, 215, 219,
225, 229, 233, 246, 251, 256,
268, 273, 277, 282, 287, 292, 296,
301, 305, 311, 326, 333, 340, 346,
$350,356,360,367,372,386$,
395, 402
estimating
exercises that use. see Estimation exercises
solutions of equations, 374
using substitution, 171

## evaluating

exponential expressions, 207
function rules, 79
excluded value, 305
explicit formula, defined, 246
for an arithmetic sequence, 246

## exponential data

analyzing features of, 404
modeling, 402-404, 409
exponential decay, 395, 396, 409
graphing, 398-399
writing, 398
exponential expressions
evaluating, 207
simplifying, 206-207, 221
using, 207
exponential form, converting to, 226
exponential functions
defined, 386, 408
evaluating, 389
graphing, 389
identifying, 387, 408
writing, 388
exponential growth, 395-399, 409
exponential models, 390
exponents. See also power(s)
division properties of, 215
in exponential decay models, 399, 409
in exponential growth models, 397, 409
multiplication properties of, 215
multiplying, 215-217
negative, 206-207
rational, 212
simplifying expressions with, 212
zero, 206-207

## expressions

algebraic, 210, 220
exponential, 206-207, 210-212, 215-217, 220, 221
radical, 226, 229-231
rational, 305-307
simplifying, 229-231, 305-307
square root, 229-231
writing radical, 235
extrapolation, 145, 155
defined, 144

## F

## factor(s)

decay, 396, 409
greatest common (GCF), 274
growth, 395, 397, 409
opposite, 306
perfect-square, removing, 229
variable, removing, 230

## factoring

difference of two squares, 296, 298
by grouping, 301-302
monomials, 274
perfect-square trinomials, 296, 297
polynomials, 275, 301
trinomials, 287-289, 292-293, 296-298
using models, 287-288
using to solve quadratic equations, 372

## factoring out

common factors, 298
monomials, 274, 293
polynomials, 275
falling object model
applying, 329-330
formula for, 326, 329-330
quadratic function for, 329-330
families of functions, 115
FOIL (First, Outer, Inner, Last), 278
formulas
for area of a square, 216
for area of circle, 17
for area of rectangle, 17
for area of trapezoid, 202, 354
for area of triangle, 17,74
for circumference of circle, 17, 19
for converting temperatures, 17
defined, 17, 46
for distance between points, 17, 19
for falling object model, 329-330
for perimeter of rectangle, 17, 35
for point-slope form, 120
for radius of circle, 232
slope, 100
for vertical motion, 333, 335
for volume of cube, 203
for volume of cylinder, 80, 217, 276, 307
for volume of prism, 281, 307
for volume of sphere, 68
fractions, solving equations containing, 6
function notation, defined, 88
function rules
evaluating, 79
graphing, 70-73
nonlinear, 73, 80
writing, 78-79, 80
function(s). See also equations; graph(s)
defined, 59, 93
domain of, 83, 89
evaluating, 88
exponential, 386-391, 408
families of, 115
identifying a reasonable domain and range, 90
identifying using mapping diagrams, 83
identifying using tables, 84
identifying using verbal descriptions, 84-85
identifying using vertical line test, 84
linear parent, 115
linear vs. nonlinear, 65
modeling, 79, 117, 397
nonlinear, 64
parent, 115
quadratic. see quadratic functions
range of, 83,89
sequences as, 248

## c

GCF (greatest common factor), 274 geometric sequences
defined, 246, 261
identifying, 247
in recursive form, 256-258
writing an explicit formula for, 248
geometry. See also area; circle; cone; cube; perimeter; rectangle; surface area; triangle(s); volume, formulas of, 17, 19, 35, 74
golden ratio, 81
golden rectangle, 81
graph(s)
analyzing, 54
of boundary lines of linear inequalities, 187-188
of compound inequalities, 40-44
continuous, 70
of direct variation, 108-109
discrete, 70
of equations, 120-121
of exponential decay, 398
of exponential functions, 389, 395, 396, 408
finding slope using, 102
of function rules, 70-73
of geometric relationships, 60
of horizontal lines, 127
of horizontal translations, 139
of inequalities, 40-44, 187-190
of linear equations, 61, 64-65, 116, 117
of linear functions, 129
of linear inequalities, 187-190
matching with data table, 55
of nonlinear function rules, 73
of nonlinear functions, 64-65
of patterns, 66
quadratic, 326-330, 333-334, 350-351, 373
of a quadratic function, 333-334
of reflected functions, 138, 139-140
scatter plot, 144
shifts of. see translations
sketching, 55
of solutions of systems of linear equations, 160-163, 181
for solving linear systems, 181
of systems of linear equations, 160-163
of systems of linear inequalities, 194-196
of transformations of linear functions, 137-142
of transformations of quadratic functions, 340-343
of translations, 137, 139, 340-343, 379
using point-slope form, 120-121
using slope-intercept form, 115-117
using to relate variables, 54
using to solve quadratic equations, 372
of vertical lines, 127
of vertical translations, 139
writing equations from, 116
writing linear inequalities from, 190
writing linear inequalities to, 189
writing systems of linear inequalities from, 195
graphing calculator. See also calculator
alpha key, 190, 196
apps key, 190, 196
CALC feature, 77, 147, 163, 335, 351, 391
correlation coefficient from, 147
exercises that use, 391, 393
finding line of best fit using, 147
graph key, 76, 190, 196
for graphing a quadratic function, 336,
351, 362
INEQUAL, 190, 196
LinReg feature, 147
MAXIMUM feature, 335
modeling exponential data with, 390-391 403-404
stat key, 147
table key, 163
tblset key, 163
window key, 76
$Y=k e y, 76,163$
zoom key, 77, 113, 114
Graphing Functions and Solving Equations, 76-77
greatest common factor (GCF), 274
Gridded Response, exercises, 203, 323, 383, 411
ground speed, 184
grouping symbols. See also individual symbols, solving equations with, 13
growth, exponential, 395, 397, 409
growth factor, 395, 409
guess and check, 36, 128

## H

half-plane, 187
horizontal lines, 101, 127, 132, 188
horizontal translations, 139, 341
hypotenuse
defined, 233
finding length of, 234

## I

identity, 11, 13, 46
inconsistent systems of linear equations, 160
independent systems of linear equations, 160
independent variables, 59, 72, 100 real-world, 71
index of radical expression, 225
indirect measurement, 28
inequality(ies). See also solving inequalities compound, 40-44
graphs of, 40-44, 194
linear. see linear inequalities
multi-step, 33, 34-37
properties of. see property(ies)
with special solutions, 36-37
Triangle Inequality Theorem, 43
with variables on both sides, 36
writing, 35, 41-42
input, 59
input value, 93
integers, in standard form, 129
intercepts. See $x$-intercept; $y$-intercept
interest, compound, 396, 397
interpolation, 144, 145, 155
intersection, point, of system of linear equations, 160

## K

Key Concept
Asymptote of an Exponential Function $y=a b^{x}, 387$
Axis of Symmetry of a Quadratic Function, 333
Compound Interest, 396
Continuous and Discrete Graphs, 70
The Converse of the Pythagorean Theorem, 233
Deriving the Quadratic Equation, 373
Elimination Method, 175
Equivalence of Radicals and Rational Exponents, 225
Explicit Formula for a Geometric Sequence, 246
Explicit Formula for an Arithmetic Sequence, 246
Exponential Decay, 396
Exponential Function, 386
Exponential Growth, 395
Factoring a Difference of Two Squares, 296
Factoring Perfect-Square Trinomials, 296
Finding Rate of Change and Slope, 100
Functions, 59
Graph of a Linear Inequality in Two Variables, 187
Graphing Inequalities, 40
Ground Speed, 182
Line of Best Fit and Correlation Coefficient, 145
Methods for Solving a Quadratic Equation, 372
Modeling a Quadratic Expression, 367
Multiplying a Monomial by a Polynomial, 273

Naming Polynomials, 268
Parabolas, 327
Point-Slope Form of a Linear Equation, 120
Product of a Sum and Difference, 282
Properties of Square Roots, 229
The Pythagorean Theorem, 233
Quadratic Formula, 372
Radicals, 225
Rational Expressions, 305
Recursive Definition - Arithmetic Sequence, 251
Recursive Definition - Geometric Sequence, 256
Reflection, 138
Reflection, Stretch, and Compression, 340
Relating Linear Factors, Solutions, and Zeros, 360
Scatter Plots, 144
Similar Figures, 27
Simplifying Radicals, 229
Slope Change, 138
The Slope Formula, 100
Slope-Intercept Form of a Linear Equation, 115
Slopes of Parallel Lines, 132
Slopes of Perpendicular Lines, 132
Solve Quadratic Equations by Graphing, 350
Square of a Binomial, 282
Standard Form of a Linear Equation, 125
Standard Form of a Quadratic Equation, 326, 350
Translation, 137, 341
Trend Lines, 145
Using an Area Model, 277
Using Rational Exponents, 210
Using Systems of Equations to Model Problems, 181
Using the Discriminant, 373
Using the Elimination Method, 175
Vertex Form of a Quadratic Equation, 346
Writing Quadratic Functions, 361
Know-Need-Plan problems, 5, 12, 24,
$28,42,55,61,65,90,116,126$,
170, 177, 195, 207, 220, 270, 278, 287, 313, 329-330, 357, 369, 398, 402-403

## L

leg, 233
like terms, combining, 4
line of best fit, 145
defined, 144
finding, 147
modeling, 147
using graphing calculator to find, 147

## line(s)

boundary, 187-190
classifying, 133
graphing, using intercept, 126
horizontal, 101, 127, 132, 188
number line(s), 40-42
parallel, 132, 133
perpendicular, 132, 134
slope of, 101
trend, 144, 145, 146
vertical, 101, 127, 132, 188

## linear equations

defined, 115
graphing, 117, 129
identifying features of, 129
point-slope form of, 120, 125
slope-intercept form of, 115, 125
solving using algebra tiles, 167-168
standard form of, 125, 127-129
systems of. see systems of linear equations
linear factors, of quadratic functions, 360, 361

## linear functions

defined, 59, 93
equations and, 61
graphs of, 60, 61, 64-65, 116-117, 129
multiplication by a constant, 140-141
nonlinear functions vs., 64-65
patterns and, 59-61
rate of change of, 102
slope change, 138
tables and, 60, 61, 129
transformations of, 137-142

## linear inequalities

boundary lines of, 187-190
defined, 187, 201
graphing, 188-190
solving. see solving inequalities
systems of. see systems of linear inequalities
writing from graphs, 190
writing to graphs, 189
linear parent functions, 115
linear regression, 145
literal equation
defined, 17, 46
with only variables, 18
rewriting, 17-18

## M

manipulatives, 252. See also algebra tiles
mapping diagrams, 83
mathematical modeling
with algebra tiles, 10, 33, 167-168, 367
area model, 282-283
of division of polynomials, 310
of equations, 10
exponential data, 402-404, 409
of exponential decay, 399
of exponential growth, 397
exponential models, 390
for factoring, 287-288
factoring a polynomial, 275
falling objects, 329-330
of a function, 79, 117, 397
of inequalities, 33
line of best fit, 147
of products of binomials, 277
of products of polynomials, 277
scale, 29-30
to solve equations with variables on both sides, 10
to solve multi-step inequalities, 33
to solve quadratic equations, 367, 374 trend line, 145
using diagrams, $5,12,78,79,80,283$
using equations, 28, 29-30, 66, 79
using graphs, 116, 117, 120, 120-121, 134, 160
using polynomials, 269-270
using standard form of linear equation, 128-129
using systems of equations, 182
using tables, 101, 122, 145
for vertical motion, 333, 335
maximum value (of parabola), 326, 327, 379
measurement, indirect, 28
mental math, 252
Mental Math, problems, 282, 284
minimum value (of parabola), 326, 327, 379
models. See mathematical modeling
monomial
adding and subtracting, 269
defined, 268, 317
dividing a polynomial by, 311
factoring out, 274, 293

## Multiple Choice

exercises, 49-50, 96-97, 156-157, 202, 242-243, 263-264, 322-323, 367-368, 382-383, 410-411
problems, $28,36,55,116,134,176,190$, 216, 221, 230, 235, 273, 279, 313, 329, 343, 357
multiplication
of binomials, 277-279
of exponents, 215
of numbers in scientific notation, 211-212
of polynomials of degree one, 273
of powers, 210-212
properties of. see property(ies)
solving systems of linear equations using, 177-178
of a trinomial and a binomial, 279
Multiplication Property of Exponents, 210
Multiplying Powers With the Same Base, 210

## N

negative correlation, defined, 144
negative exponents, 206
negative slope, 101
no correlation, defined, 144
nonlinear function rules
graphing, 73
writing, 67, 80

## nonlinear functions

defined, 64, 93
graphs of, 64, 65
vs. linear functions, 64
patterns and, 64-66
representing, 66
rules describing, 67
$\boldsymbol{n t h}$ root, defined, 225
null set. See empty set
number line(s)
for graphing compound inequalities, 40
linear inequalities in one variable graphed as, 188
number sense, 258
defined, 256
numbers
dividing, in scientific notation, 220
integers, 129
multiplying, in scientific notation, 211-212

## 0

opposite factors, 306
opposite reciprocals, $132,134,154$
or, compound inequalities containing, 41
ordering, terms, 313
output, 59
output value, 93

## P

## parabolas

axis of symmetry of, 326, 327
comparing widths of, 328
defined, 326, 378
maximum point of, 326, 327
minimum point of, 326,327
in quadratic graphs, 327-329
symmetry of, 326, 327
vertex of, 326, 327
parallel lines, 132, 133, 154
parent functions, 115, 326, 327
patterns. See also sequences
equations representing, 66
and geometric relationships, 60
graphing, 66
and linear functions, 59-61
and nonlinear functions, 64-67
representing, 66
in sequences, 247
tables showing, 66
percent increase, 141
perfect-square trinomial, 296, 297
defined, 296
perimeter
of hexagon, 112
of rectangle, 17, 35, 202
perpendicular lines, 132, 134, 154

## points

equations from two, 116
finding slope using, 103
formula for distance between, 17, 19
of intersection of lines, 160
point-slope form of linear equations, 120-122, 127-128, 133, 153
polygon, 203
polynomial(s)
adding, 269-270
classifying, 269
defined, 268, 317
dividing, 310, 311-313
dividing with a zero coefficient, 313
factoring out, 275
modeling with, 269-270
multiplying, 277
naming, 268
standard form of, 268
subtracting, 270
positive coefficients, in multi-step inequalities, 36
positive correlation, 144
positive number(s), in nonlinear functions, 73
positive slope, 101
power(s). See also exponents
in algebraic expressions, 210-212
multiplying, 210-212, 215-217
raising a power to, 215
raising a product to, 215-217
raising a quotient to, 219, 221
with same base, 210-212
simplifying, 206

## Practice and Application Exercises,

7-9, 14-16, 19-21, 24-26, 30-32, 37-39, 42-44, 56-58, 62-63, 67-69, 73-75, 80-82, 85-87, 90-91, 104-107, 110-112 118-119, 122-124, 129-131, 135-136, 142-143, 148-150, 164-166, 172-174, 178-180, 184-186, 191-193, 196-198, 208-209, 213-214, 217-218, 221-223, 227-228, 231-232, 236-237, 249-250, 253-255, 258-260, 271-272, 275-276, 280-281, 284-285, 290-291, 294-295, 299-300, 303-304, 307-309, 314-315, 330-332, 337-339, 344-345, 348-349, 353-354, 358-359, 364-366, 370-371, 376-377, 391-394, 399-401, 405-407
principal square root, defined, 225
prism, 281, 302
problem-solving strategies
draw a diagram, 80, 279
find a pattern, 60, 66, 247
guess and check, 36, 128
make a table, $60,65,71,161,278$, 288-289
make an organized list, 288-289
solve a simpler problem, 4, 6, 67, 207, 211, 229, 279
try, check, revise, 221
work backward, 42
write an equation, 5, 61, 79, 182, 313, 368, 1103
products
cross, 22
of powers with same base, 210-212
radical expressions involving, 230
simplifying, 215-216
of a sum and a difference, 284

## property(ies)

Addition Property of Equality, 175
Commutative Property of Multiplication, 230
Cross Products Property of a Proportion, 22
Distributive Property, 6, 36, 278
Dividing Powers With the Same Base, 219
Division Property of Exponents, 219
Division Property of Square Roots, 229, 230

Multiplication Property, 23
Multiplication Property of Exponents, 215
Multiplication Property of Square Roots, 229

Multiplying Powers With the Same Base, 210

Raising a Power to a Power, 215
Raising a Product to a Power, 215
Raising a Quotient to a Power, 219
Subtraction Property of Equality, 175
Zero and Negative Exponents, 206
Zero-Product Property, 356, 380

## proportions

defined, 22
multi-step, 23
in similar figures, 27
solving, 22-26
solving using Cross Products Property, 23
solving using Multiplication Property, 23
using to find side lengths, 28
using to interpret scale drawings, 29
using to solve problems, 24

## Pythagorean Theorem

converse of, 233
defined, 233
using, 233-235, 241

## Q

## quadratic equations

choosing method for solving, 375
choosing reasonable solution, 352
defined, 350
modeling, 367
roots of, 350, 352
solutions of, 380
solving by completing the square, 367-369
solving by factoring, 356-358
solving by graphing, 351
solving using square roots, 352
standard form of, 350, 357
Quadratic Formula, 373
defined, 372
deriving, 373
using, 372-375, 381

## quadratic functions

defined, 326, 378
graphs of, 326-330, 333-334, 340-343, 350-351, 360-363, 373
identifying key attributes, 327
parent function, 326, 327
roots of, 362
standard form of, 326, 363
vertex form of, 346-348
zero of, 350, 361, 380
zero product property of, 356
quadratic graphs, 326-330, 333-334, 350-351, 360-363, 373
quadratic parent function, 326, 327
quadratic regression, 333
Quick Review, 45-48, 92-95, 152-155, 199-201, 238-241, 261-262,
317-321, 378-381, 408-409

## quotients

radical expressions involving, 230-231
raising to a power, 219, 221

## R

radical expressions, 241
defined, 225
multiplying, 230
simplifying, 229-231
simplifying by multiplying, 229
using, 226
writing, 235
radical form, converting to, 226
radicals
defined, 225
simplifying, 229-231
radicands, defined, 225
radius, of circle, 232
Raising a Power to a Power, 215
Raising a Product to a Power, 215
Raising a Quotient to a Power, 219
range
defined, 83, 95
of a function, 89
of function, 83, 328, 389
identifying, 83, 90
reasonable, 389
rate(s). See also distance-rate-time problems of change, 100-104, 152
defined, 22
ratio(s), defined, 22
rational exponents and radicals, 225
using, 210
rational expression(s)
defined, 305, 320
simplifying, 305-307
using, 307
rationalize a denominator, 231
defined, 229
reasonableness, defined, 287, 360
reciprocals, opposite, 132, 134
rectangle
area of, 17
perimeter of, 17, 35
recursive definition, 251, 262
recursive formula
defined, 251
writing, 252, 253, 257

## reflections

defined, 137
graphing, 138, 139-140, 340, 379
Relate-Define-Write problems, 5, 12, 28, $35,78,79,128,162,176,399,403$
relation(s)
causal, 148
defined, 83, 95
and domain, 83
and range, 83
Review. See Topic Review
right triangles
defined, 233
hypotenuse of, 233, 234
identifying, 235
legs of, 233, 234
Pythagorean Theorem and, 233-235
rise, 100
root of an equation, 350
roots. See $n$th root; square roots
rules
describing nonlinear functions, 67
function, writing, 78-79
writing, 67, 80
run, 100

## S

SAT test prep. See assessment; Gridded Response; Multiple Choice
scale, 29
scale drawings, 29
scale models, 29-30
scatter plots
defined, 144, 155
making, 145
trends in, 144
scientific calculator. See calculator; graphing calculator

## scientific notation

dividing numbers in, 220
multiplying numbers in, 211-212
raising a number to a power in, 217

## sequences

defined, 246, 261
extending, 247
terms of, 246
using, 258
writing an explicit formula for, 248
set(s), data. see data
signs. See negative numbers; positive number(s)
similar figures
applying similarity to proportions, 28
defined, 27
finding lengths of sides of, 28
problems involving, 27-32
simplifying
algebraic expressions, 206, 212, 215-216, 221
exponential expressions, 206-207, 212, 215-216, 221
fractions within radicals, 230
powers, 206-207, 212, 215-216, 221
radical expressions, 229-231
rational expressions, 305-307

## slope

change in, 138
defined, 100, 152
finding, 100-104, 132, 133
formula for, 100
graphing, 138
graphs of, 100-104, 113-114
of horizontal and vertical lines, 103
of a line, 101
negative, 101
of parallel lines, 132
of perpendicular lines, 132
positive, 101
rate of change as, 100
slope-intercept form, 115-117, 125, 133, 153
solution of a system of linear inequalities, defined, 194
solution of an inequality, defined, 187
solve a simpler problem, 4, 6, 67, 207, 211, 229, 279
solving equations. See also equations; quadratic equations
containing decimals, 6-7
containing fractions, 6
with infinitely many solutions, 172
linear, by graphing, 160-163
linear, choosing method of, 181
linear, using elimination method, 175-176, 184
linear, using substitution method, 169-172, 181
multi-step, 4-7
with one variable, 390-391
using elimination method, 181
using graphs, 181
using substitution, 170
solving inequalities
compound, 40-44
linear, 187
multi-step, 34-37
with no solution, 37

## Solving Systems Using Algebra Tiles,

 167-168sphere(s), volume of, 68, 285
square roots. See also radicals
defined, 225
Division Property of, 229, 230
Multiplication Property of, 229
solving quadratic equations using, 352
using to solve quadratic equations, 372

## square(s)

of a binomial, 283
completing, 367
difference of two, 296, 298
perfect, 229, 296, 297
perfect-square trinomials, 296, 297
standard form, 153
of linear equations, 125
of polynomials, 268
of quadratic equations, 350, 374, 380
of quadratic functions, 326, 363
using as a model, 128-129
writing linear equations in, 127-128
STEM, 14, 19, 20, 21, 26, 29, 31, 37, $43,44,55,62,75,90,109,111$, $112,117,123,134,146,161$, 184, 186, 207, 208, 209, 211,
213, 217, 218, 222, 223, 226,
227, 236, 237, 276, 285, 290,
294, 297, 303, 308, 315, 332,
354, 358, 399, 401
strategy, defined, 287, 360

## stretch

defined, 340
graphing quadratic functions with, 341, 379
substitution, for solving linear systems, 181

## substitution method

defined, 169
solving for a variable using, 170
solving systems of linear equations using, 181
for verifying an estimate, 171

## subtraction

of monomials, 269
of polynomials, 270
properties of. see property(ies)
solving systems of linear equations using, 176
Subtraction Property of Equality, 175
surface area, of prism, 21

## systems of linear equations

choosing a method for solving, 181
consistent, 160
defined, 160
dependent, 160
finding break-even points using, 182
graphing, 160-163, 199
inconsistent, 160
independent, 160
with infinitely many solutions, 162, 178
with no solution, 162, 172
with one solution, 162
solving. see solving equations
using to solve real-world problems, 170-171
writing, 161

## systems of linear inequalities

defined, 194, 201
graphing, 194-196
writing, from graphs, 195

## T

table key, of graphing calculator, 163 tables
direct variation and, 109-110
of direct variation variables, 109-110
finding rate of change using, 101
of geometric relationships, 60
for graphing quadratic functions, 328
matching with graphs, 55
patterns shown using, 66
representing linear functions, 60, 129
writing linear inequalities from, 190
Take Note, 11, 17, 22, 27, 40, 59, 64, $70,88,100,101,108,115,120$, $125,132,137,138,144,145,160$, 175, 181, 182, 187, 206, 210, 215, 219, 225, 229, 233, 246, 251, 256, 268, 273, 277, 282, 296, 301, 305, $311,326,327,333,340,341,346$, 350, 356, 360, 361, 367, 372, 373, 386, 395, 396

## Technology Lab

Graphing Functions and Solving Equations, 76-77

Investigating $y=m x+b, 113-114$
TEKS Cumulative Practice, 49-51, 156-157, 202-203, 242-243, 263-265, 322-323, 382-383, 410-411
temperature, formula for converting, 17 term of a sequence, defined, 246

## terms

of arithmetic sequences, 246
like, 4
of recursive arithmetic sequences, 252
of recursive geometric sequences, 257-258
reordering in polynomial division, 313
Texas End-of-Course Practice, 9, 16, 21 $26,32,39,44,58,63,69,75,82$, $87,91,107,112,119,124,136,143$, 151, 166, 174, 180, 186, 193, 198, 209, 214, 218, 224, 228, 232, 237, 250, 255, 260, 272, 276, 281, 286, 291, 295, 300, 304, 309, 316, 332, 339, 345, 349, 355, 359, 366, 371, 377, 394, 401, 407

## theorems

Pythagorean, 233
Triangle Inequality, 43
Think-Write problems, 103, 121, 216, 226, 274, 284, 293, 298, 306, 347-348, 352, 375
Three-Act Math, 2-3, 52-53, 98-99, 158-159, 204-205, 244-245, 266-267, 324-325, 384-385
time. See distance-rate-time problems
Topic Review, 45-48, 92-95, 152-155, 199-201, 238-241, 261-262, 317-321, 378-381, 408-409

## transformations

defined, 137, 154
describing a combination of, 343
of linear functions, 137-142
of quadratic functions, 343, 363, 379

## translations

defined, 137, 154
graphing, 137, 139, 340-343, 379
horizontal, 139, 341
vertical, 139, 341
trend. See correlation
trend line, 145, 146
defined, 144, 155
Triangle Inequality Theorem, 43
triangle(s)
area of, 17, 74
inequality in, 43
isosceles right, 74
length of side of, 37

## trinomials

defined, 268
factoring, 287-289, 292-293, 296-298
of the form $a x^{2}+b x+c, 292-293$
of the form $x^{2}+b x+c, 287-289$
multiplying a binomial by, 279
perfect-square, 296, 297
in rational expressions, 306
with two variables, 289

## v

## variable(s)

on both sides of an equation, 11-13
dependent, 59, 100
in direct variation equations, 108-110
eliminating, 175, 178
in equations, 10, 11-13
independent, 59, 60, 71, 72, 100
in linear equations, 115
in linear inequalities, 187-190
vertex form, 379
defined, 346
interpreting, 346
using, 347
writing a quadratic function in, 347
vertex of a parabola, $326,327,378$
vertical line test, 84
defined, 83
vertical lines, 104, 127, 132, 188
vertical motion model, 333, 335
vertical translations, 139, 341
viable solution, 183

Vocabulary, 4, 11, 17, 22, 27, 34, 40, 54, $59,64,70,78,83,88,100,108,115$, $120,125,132,137,144,160,169$, 175, 181, 187, 194, 206, 210, 215, 219, 225, 229, 233, 246, 251, 256, 268, 273, 277, 282, 287, 292, 296, $301,305,311,326,333,340,346$, 350, 356, 360, 367, 372, 386, 395, 402

## volume

of cube, 203
of cylinder, 80, 276, 307
formulas for, 69, 80, 276, 285
of prism, 280, 307
of sphere, 68, 285

## W

write an equation, $5,12,61,79,182,368$

## writing

direct variation equations, 110
direct variation from tables, 110
equations from graphs, 116
equations from two points, 116
equations in point-slope form, 120, 121, 125, 133
equations in slope-intercept form, 116, 125,133
equations in standard form, 125, 127-128
equations of direct variation, 109
equations of parallel lines, 133
equations of perpendicular lines, 132, 134
equations of trend lines, 146
explicit formulas, 253
explicit formulas for sequences, 248
exponential decay function, 398
exponential functions, 388
function rules, 78-79, 80
inequalities, 35
linear inequalities to graphs, 189
quadratic equations, 360-363
quadratic functions in vertex form, 349
radical expressions, 235
recursive formulas, 252, 253, 257
Relate-Define-Write problems, 403
rule describing nonlinear functions, 67
system of linear equations, 161
system of linear inequalities from graphs, 195
Think-Write problems, 103, 121, 216, 226, 274, 284, 293, 298, 306, 347-348, 352, 375

## X

x-intercept, 125-126, 132

## Y

$y$-intercept, 115, 116, 117, 125-126, 153, 160

## Z

zero
as coefficient, 313
as exponent, 206
of quadratic functions, 380
slope of horizontal line as, 101
as substitute for $x$ - or $y$-intercept, 125
zero of a function, 361
defined, 350
Zero-Product Property, 356, 380

## Acknowledgments

## Cover Design

Tom White / 9 Surf Studios
Brian Reardon and Jamee Farinella

## Photographs

Photo locators denoted as follows: Top (T), Center (C), Bottom (B), Left (L), Right (R), Background (Bkgd)

## Cover

Gerald French/Corbis.

002 (Bkgrd) RTimages/Fotolia, (C) CRISSY PASCUAL/UT/ZUMA Press, Inc./Alamy; $\mathbf{0 2 0}$ Reuters/Corbis; $\mathbf{0 2 9}$ (BC) Ingram Publishing/ Superstock, (BR) The Franklin Institute, Philadelphia, P.A., (CL) Medi-Mation Ltd/Science Source; $\mathbf{0 5 2}$ Maridav/Fotolia; $\mathbf{0 7 2}$ (CL) iStockphoto, (C) Ian O'Leary/Dorling Kindersley, (CR) Taylor S. Kennedy/National Geographic Stock; 098 Antenna/fStop/Alamy; 109 (BCR) NASA/AP Photo, (CR) GSFC/NASA, (TCR) Friedrich Saurer/ Science Source; 117 (CR) Tobias Bernhard/Corbis, (R) David Joyner/ iStockphoto; 146 Eric Baccega/age fotostock/Alamy; 158 Jeff Greenberg/PhotoEdit, Inc.; 161 (BL) Ilian Animal/Alamy, (BR) James Carmichael Jr./Photoshot; 204 steven r. hendricks/Shutterstock; 208 Kevin Schafer/Photoshot; $\mathbf{2 1 4}$ GeoStills/Alamy; 227 bunwit/Fotolia; 228 (TCR) fotopak/Fotolia, (TR) Aaron Amat/Fotolia; 234 Rob Belknap/ iStockphoto; $\mathbf{2 3 6}$ Geoffrey Morgan/Alamy; 237 Laure Neish/ iStockphoto; $\mathbf{2 4 4}$ Jacek Chabraszewski/Fotolia; 254 Keantian/Fotolia; 266 Seeberg/Caro/Alamy; 275 (BR) Paulo Fridman/Corbis, (CR) brt PHOTO/Alamy; $\mathbf{2 8 0}$ Henry Wilson/Photoshot; 297 Brandon Alms/ Shutterstock; 315 iofoto/Fotolia; 324 Larry W. Smith/EPA/Newscom; 338 Julie Lubick/Shutterstock; 347 Brian Bevan/Alamy; 357 Sly/Fotolia; 384 Tomas del amo/Alamy; 389 Nigel Cattlin/Alamy; 392 Biophoto Associates/Science Source; 399 Seigo Yamamura/Aflo/Getty Images.

