Chapter 5 Study Guide

§5.1 System of Linear Equations

Solve the systems by elimination.

1)
$$x-2y+3z=9$$

 $-x+3y=-4$
 $2x-5y+5z=17$

Solution: _____

2) 2x + 3y = 11x + 2y = 8 Solution:

§ 5.1 Systems of Linear Systems

Use the substitution method or the elimination method to solve the following systems.

3)
$$3x + 2y = -9$$

 $2x = 5y - 6$

Solution:

4)
$$x-y+5z = -6$$

 $3x + 3y - z = 10$
 $x + 3y + 2z = 5$

Solution:

§5.3 Determinant Solution of Linear Systems

Find the determinant of matrix B.

5)
$$B = \begin{bmatrix} 3 & 4 \\ 5 & -2 \end{bmatrix} =$$

Find the determinant of matrix A by expanding through any row and using Cofactors.

6)
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix} = \underline{\hspace{1cm}}$$

§ 5.7 Properties of Matrices

Evaluate the following if possible. If not, write not possible, and explain why.

7)
$$\begin{bmatrix} 2 & 2 & 4 \\ -3 & 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & -4 & 3 \\ -1 & 3 & 2 \end{bmatrix} =$$

8)
$$\begin{bmatrix} 6 & -2 & 0 \\ -9 & 4 & -3 \end{bmatrix} - \begin{bmatrix} 4 & 12 \\ 10 & -4 \end{bmatrix} =$$

9)
$$-5\begin{bmatrix} 1 & -1 \\ -3 & 3 \\ -2 & 2 \end{bmatrix} =$$

10)
$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} =$$

Calculate the inverse of the matrix algebraically using $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ for problem 11 and $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ for problem 12.

$$11) B = \begin{bmatrix} -1 & 2 \\ 3 & -5 \end{bmatrix}$$

12)
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}$$

1.
$$(1,-1,2)$$

$$2. (-2,5)$$

4.
$$(1, 2, -1)$$

7.
$$\begin{bmatrix} 3 & -2 & 7 \\ -4 & 3 & 1 \end{bmatrix}$$

8. Not possible because the matrices are not the same size.

9.
$$\begin{bmatrix} -5 & 5 \\ 15 & -15 \\ 10 & -10 \end{bmatrix}$$

10.
$$\begin{bmatrix} -5 & 7 \\ -3 & 6 \end{bmatrix}$$

$$11. B^{-1} = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$$