Name:	
Date:	

Chapter 3 Study Guide

In Problem 1, you are given an equation and the graph of a quadratic function. Do each of the following.

(a) Write f(x) in vertex form

- (b) Give the domain and range.
- (c) Give the coordinates of the vertex.
- (d) Give the equation of the axis.

(e) Find the y-intercepts.

(f) Find the x-intercepts.

1)
$$f(x) = x^2 - 10x + 21$$

Use synthetic division to perform each division. Express the result in the form $f(x) = q(x) + \frac{r}{(x-k)}$. If r = 0, then f(x) = q(x) is sufficient. Show all work for credit.

2)
$$\frac{x^6 - 3x^4 + 2x^3 - 6x^2 - 5x + 3}{x + 2} = \underline{\hspace{1cm}}$$

3)
$$\frac{x^5+1}{x+1} =$$

Express f(x) in the form f(x) = (x - k)q(x) + r for the given value of k.

4)
$$f(x) = 3x^4 + 4x^3 - 10x^2 + 15$$
; $k = -1$

For the polynomial function, use the remainder theorem and synthetic division to find f(k).

5)
$$f(x) = x^2 - x + 3$$
; $k = 3 - 2i$

Use synthetic division to decide whether the given number k is a zero of the given polynomial function. If it is not, give the value of f(k).

6)
$$f(x) = 16x^4 + 4x^2 - 2$$
; $k = \frac{1}{2}$

Use the factor theorem and synthetic division to decide whether the second polynomial is a factor of the first.

7)
$$-3x^4 + x^3 - 5x^2 + 2x + 4$$
; $x - 1$

Factor f(x) into linear factors given that k is a zero of f(x).

8)
$$f(x) = 2x^3 - 3x^2 - 5x + 6$$
; $k = 1$

f(x)_____

For the polynomial function, one zero is given. Find all others.

9)
$$f(x) = 4x^3 + 6x^2 - 2x - 1$$
; $\frac{1}{2}$

Zeros:_____

For the polynomial function (a) list all possible rational zeros, (b) find all rational zeros and (c) factor f(x).

10)
$$f(x) = x^3 - x^2 - 10x - 8$$

- (a) Possible Zeros:
- (**b**) Rational Zeros: ______
- (c) f(x) =_____

Find a polynomial function of degree 3 with real coefficients that satisfies the given conditions.

11) Zeros of 2,
$$-3$$
 and 5; $f(3) = 6$

$$f(x) = \underline{\hspace{1cm}}$$

12) Describe the end behavior of the graph of each polynomial function.

(a)
$$-4x^3 + 3x^2 - 1$$

(b)
$$3 + 2x - 4x^2 - 5x^{10}$$

13) Use the intermediate value theorem for polynomials to show that each polynomial function has a real zero between the numbers given.

(a)
$$2x^3 - 5x^2 - 5x + 7$$
; 0 and 1

(b)
$$3x^2 - x - 4$$
; 1 and 2

14) Show that the real zeros of each polynomial function satisfy the given condition

(a)
$$f(x) = x^4 - x^3 + 3x^2 - 8x + 8$$
; no real zero greater than 2

(b)
$$f(x) = x^4 + x^3 - x^2 + 3$$
; no real zero less than - 2

15) Find the Horizontal and Vertical Asymptotes of the following:

$$(a) f(x) = \frac{x^2 - x}{x + 2}$$

(b)
$$f(x) = \frac{5x}{x^2 - 1}$$